
Chapter 5 

Rationalizability 

A player is said to be rational if he maximizes expected value of his utility function, as 

described in the game. The previous lecture explored the implications of rationality. This 

was captured by dominance. In natural strategic environments, this often yields weak 

predictions. Moreover the games in which dominance alone leads to a sharp prediction 

(e.g. the games with a dominant strategy equilibrium) are not interesting for game 

theory because in such a game each player’s decision can be analyzed separately without 

requiring a game theoretical analysis. 

Nevertheless, in definition of a game, one assumes much more than rationality of the 

players. One further assumes that it is common knowledge that the players are rational. 

That is, everybody is rational; everybody knows that everybody is rational; everybody 

knows that everybody knows that everybody is rational ... up to infinity. If some of 

these assumptions fail, then one would need to consider a different game, the game 

that reflects the failure of those assumptions. This lecture explores the implications 

of the common knowledge of rationality. These implications are precisely captured by 

a solution concept called rationalizability, which is equivalent to iterative elimination 

of strictly dominated strategies. In this way, rationalizability precisely captures the 

implications of the assumptions embedded in the definition of the game. 

65 



66 CHAPTER 5. RATIONALIZABILITY 

5.1 Definition and Illustration 

It is useful to illustrate the solution concept on the leading example of the previous 

section: (4.1). We have seen there that strategy  is strictly dominated (by a mixture 

of  and ) and hence it cannot be a best response to any belief. Hence, rationality of 

player 1 implies that Player 1 does not play  . No other strategy is strictly dominated. 

For example, for Player 2, her both strategies can be a best reply. If she thinks that 

Player 1 is not likely to play  , then she must play , and  if  she thinks that it is very  

likely that Player 1 will play  , then she must play . Hence, rationality of Player 2 

does not put any restriction on her behavior. But, what if she thinks that it is very 

likely that player 1 is rational (and that his payoff are as in (4.1))? In that case, since 

a rational player 1 does not play  , she must assign very small probability for player 1 

playing  .  In fact,  if  she knows  that  player  1 is rational,  then  she must be sure that he  

will not play  .  In that case,  being  rational,  she must play  . In  summary,  if Player 

2 is rational and she knows that player 1 is rational, then she must play R. 

Notice that we first eliminated all of the strategies that are strictly dominated 

(namely ), then taking the resulting game, we eliminated again all of the strate-

gies that are strictly dominated (namely ). This is called twice iterated elimination of 

strictly dominated strategies. In general, if a player is rational and knows that the other 

players are also rational (and the payoffs are as given), then he must play a strategy 

that survives twice iterated elimination of strictly dominated strategies. 

Under further rationality assumptions, one can further iteratively eliminate strictly 

dominated strategies (if there remains any). In example (4.1), recall that rationality 

of Player 1 requires him to play  or , and knowledge of the fact that Player 2 is 

also rational does not put any restriction on his behavior–as rationality itself does not 

restrict Player 2’s behavior. Now, assume that Player 1 also knows that Player 2 is 

rational and that Player 2 knows that Player 1 is rational (and that the game is as in 

(4.1)). Then, as the above analysis shows, Player 1 must know that Player 2 will play 

. In that case, being rational he must play . 

This analysis yields a mechanical procedure to analyze games, -times Iterated Elim-

ination of Strictly Dominated Strategies: eliminate all the strictly dominated strategies 

and iterate this -times. In this procedure, one eliminates all the strictly dominated 

strategies and iterates this  times. 
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General fact: If (1) every player is rational, (2) every player knows that every 

player is rational, (3) every player knows that every player knows that every player is 

rational, . . . and () every player knows that every player knows that . . . every player is 

rational, then every player must play a strategy that survives -times iterated elimination 

of strictly dominated strategies. 

Caution: Two points are crucial for the elimination procedure: 

1. 	  One must eliminate only the  strictly dominated strategies. One cannot eliminate 

a strategy if it is weakly dominated but not strictly dominated. For example, in 

the game 
  

 1 1 0 0 

 0 0 0 0 

( ) is a dominant strategy equilibrium, but no strategy is eliminated because  

does not strictly dominate  and  does not strictly dominate . 

2. One must eliminate the strategies that are strictly dominated by mixed strategies 

(but not necessarily by pure strategies). For example, in the game in (4.1),  

must be eliminated although neither  nor  dominates  . 

When there are only finitely many strategies, this elimination process must stop at 

some . That is, at some  there will be no dominated strategy to eliminate. In that 

case, iterating the elimination further would not have any effect. 

Definition 5.1 The elimination process that keeps iteratively eliminating all strictly 

dominated strategies until there is no strictly dominated strategy is called Iterated Elim-

ination of Strictly Dominated Strategies; one eliminates indefinitely if the process does 

not stop. A strategy is said to be rationalizable if  and  only if it survives iterated  elimi-

nation of strictly dominated strategies. 

As depicted in Figure 5.1, the procedure is as follows. Eliminate all the strictly 

dominated strategies. In the resulting smaller game, some of the strategies may become 

strictly dominated. Check for those strategies. If there is one, apply the procedure one 

more time to the smaller game. This continues until there is no strictly dominated strat-

egy; the elimination continues indefinitely if the process does not stop. The remaining 
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Eliminate all the strictly 
dominated strategies. 

Yes Any dominated strategy 
In the new game? 

No 

Rationalizable strategies 

Figure 5.1: Algorithm for rationalizability 

strategies are called rationalizable. When the game is finite, the order of eliminations 

does not matter for the resulting outcome. For example, even if one does not eliminate 

a strictly dominated strategy at a given round, the eventual outcome is not affected by 

such an omission. In that case, it is also okay to eliminate a strategy whenever it is 

deemed to be strictly dominated. 

Theorem 5.1 If it is common knowledge that every player is rational (and the game 

is as described), then every player must play a rationalizable strategy. Moreover, any 

rationalizable strategy is consistent with common knowledge of rationality. 

A general problem with rationalizability is that there are usually too many rational-

izable strategies; the elimination process usually stops too early. In that case one cannot 

make much prediction based on such analysis. For example, in the Matching Pennies 

game 

1\2   

 −1 1 1−1 
  1−1 −1 1 

every strategy is rationalizable, and we cannot say what the players will do. 
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5.2 Example: Beauty Contest 

Consider an -player game in which each player  has strategies  ∈ [0 100], and payoff µ ¶2
2 1 + · · ·

 (1     ) =  −  −  
3  

Notice that, in this game, each player tries to play a strategy that is equal to two thirds of 

the average strategy, which is also affected by his own strategy. Each person is therefore 

interested guessing the other players’ average strategies, which depends on the other 

players’ estimate of the average strategy. 

One iteratively eliminate strictly dominated strategies as follows. First, since each 

strategy must be less than or equal to 100, the average cannot exceed 100, and hence 

any strategy   2003 is strictly dominated by 200/3. Indeed, any strategy   1 is 

strictly dominated by 1 where1 

2 (− 1)
1 = 100 

3− 2 

To show that   1 is strictly dominated by 1, we  fix any  (1     −1 +1    ) 

and show that ¡ ¢ 
 (1     −1  +1    )   1     −1 

1 +1      (5.1) 

By taking the derivative of  with respect to , we  obtain  µ ¶µ ¶
 2 2 1 + · · · 

= −2 1 −  −  
 3 3  

Clearly,   0 if µ ¶
2 1 + · · ·

 −  0 
3  

which would  be  the case if  X 
  

2 
 ≡  ∗  (5.2) 

3− 2 
 6= 

Hence,  is strictly increasing when   ∗ and strictly decreasing when   ∗. On  P 
the other hand, since each  ≤ 100, the  sum   6=  is less than or equal to (− 1) 100. 

Hence, it suffices that 

  
2

(− 1) 100 = 1 
3− 2 

1Here 1 is just a real number, where superscript 1 indicates that we are in Round 1. 
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Therefore, for any   1, we  have  ∗ ≤ 1   Since we have established that  is a 

strictly decreasing function of  in  this  region,  this proves that (5.1)  is  satisfied. This 

shows that all  the strategies    1 are eliminated in the first round. 

On the other hand, each  ≤ 1 is a best response to some (1     −1 +1    ) 

with X2 
 =   

3− 2 
 6= 

Therefore, at the end of the first round the set of surviving strategies is [0 1]. £ ¤ 
Now, suppose that at the end of round , the set of surviving strategies is 0  for 

some number  . By repeating the same analysis above with  instead of 100, we can £ ¤ 
conclude that at the end of round +1, the set of surviving strategies is 0 +1 where 

2 (− 1)
+1 =  

3− 2 

The solution to this equation with 0 = 100  is ∙ ¸
2 (− 1)

 = 100 
3− 2 

Therefore, for each , at  the  end  of  round  , a strategy   survives if and only if ∙ ¸
2 (− 1)

0 ≤  ≤ 100 
3− 2 

Since ∙ ¸
2 (− 1)

lim 100 = 0 
→∞ 3− 2 

the only rationalizable strategy is  = 0. 

Notice that the speed at which  goes to zero determines how fast we eliminate 

the strategies. If the elimination is slow (e.g. when 2 (− 1)  (3− 2) is large), then 

many strategies are eliminated at very high iterations. In that case, predictions based on 

rationalizability will heavily rely on strong assumptions about rationality, i.e., everybody 

knows that everybody knows that ... everybody is rational. For example, if the  is 

large or the ratio 23 is replaced by a number close to 1, the elimination is slow and the 

predictions of rationalizability are less reliable. On the other hand, if  is small or the 

ratio 23 is replaced by a small number, the elimination is fast and the predictions of 

rationalizability are more reliable. In particular, the predictions of rationalizability for 

this game is more robust in a small group than a larger group. 



71 5.2. EXAMPLE: BEAUTY CONTEST 

It is important that one analyzes the game that describes the actual situation. For 

example, when the above game is played in classroom, there are often some students who 

would rather move the mean in an unexpected direction and upset the other students 

than get the prize of being closest to the two thirds of the average. Those students 

bid 100 instead. In such experiments, the resulting outcome is often different from the 

rationalizable solution of 0 for the above game, which does not take into account the 

existence of such students. In fact, some students bid 0 in the first time they play 

the game and switch to relatively higher bids in the follow up games. To analyze that 

situation, consider the following variation. 

For example, in the beauty contest game suppose that there are  mischievous 

students with utility function µ ¶2
1 + · · ·

 (1     ) =   −  
 

The remaining − students are as before. The best response of a mischievous student P 
is 0 if the expected value of  6  (− 1) is greater than 50, and it is 100 otherwise. = 

Hence at the first round all strategies other than 0 and 100 are eliminated for the 

mischievous students. 

For each round  there are such that  survives  rounds of iterated elimination for 

a regular student iff  ≤  ≤ ̄ Note that for  = 0  = 0  and ̄ = 100. In  the  

earlier rounds, both 0 and 100 are available for mischievous students, and in that case 

the lower bound remains  = 0  because 0 is a best response to 0 for regular students. P 
To compute the upper bound, fix a regular student  . The expected value of = 6  

−1can take any value in [0 100 + ( − − 1)̄−1], where  100 + ( − − 1)¯ is 

obtained by taking the highest possible bid for each remaining students,  mischievous 

−1students playing 100 and (−− 1) regular students playing ¯ . The best reply to 

this value give us the upper bound: 

̄ = 
2 

[100+ (−− 1)̄−1] (5.3) 
3− 2 P 

which is obtained by substituting 100+(−− 1)̄−1 for  6  in 5.2. As above, = 

all   ̄ is eliminated. Note that as  →∞ ̄ converges to 
2 · 100 200 

∞ 3−2¯ = = (5.4) 
1 −

3
2 
−2 (−− 1) + 2 
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(One can obtain ̄∞ by substituting ̄∞ for ̄ and ̄−1 in 5.3.) 

The lower bound  depends on whether 0 remains a best response to a mischievous 

student. This is the case when 
̄( −) + 100( − 1) ≥ 50 

 − 1 
If  ≥ 4, then  ̄∞ satisfies the above inequality. In that case, all ̄ satisfy the 

inequality, and neither 0 nor 100 is eliminated for the mischievous students. In that case, 

the rationalizable strategies are {0 100} for mischievous students and [0 200(+2)] 

for the  regular students.  If   ≥ 4, then  ̄∞ fails the above inequality. Then, there 

exists ∗ such that ̄ fails the inequality for every  ≥ ∗ and ̄ satisfies the inequality 

for all   ∗ In that case at round ∗ + 1 0 is eliminated for mischievous students. 

Consequently, at round  = ∗ + 2  and after, for any regular student , the lowest value P 
for = is 100 + ( − − 1)−1 As in the above analysis, the best response to  6  

this yields the lower bound at : 

 = 
2 

[100 + ( − − 1)−1] (5.5) 
3 − 2

Of course, as  →∞,  converges to 
200 

∞∞ = ¯ =  
 + 2 

In that case, the unique rationalizable strategy is 200( + 2) for regular students 

and 100 for the mischievous students. The rationalizable strategy is plotted in Figure 

2. Note that the mischievous students have a large impact. For example, when 10% of 

the students are mischievous, the rationalizable strategy for regular students is 2012 ∼= 

16667 and the average rationalizable bid is 25. 

5.3 Exercises with Solution 

1. [Homework 2, 2011] Compute the set of rationalizable strategies in the following 

game. 
    

 

 

 

 

3 1 1 0 0 2 1 1 

1 0 0 10 1 0 0 10 

2 1 1 0 0 0 0 0 

0 0 12 0 3 1 0 0 
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Figure 5.2: Rationalizable strategy as a function of the fraction of the mischievous 

students 

Solution: For player 1,  strategy   is dominated by a mixed strategy that puts 

probability 12 on  and probability 1/2 on . No other strategy is dominated. 

After elimination of , strategies   and  become dominated; both  and  are 

dominated by any strategy that puts positive probabilities on  and  and zero 

probability on  and . Strategies   and  are eliminated in the second round. In 

the next round,  is eliminated because it becomes dominated by a mixed strategy 

that puts probability 12 on  and probability 1/2 on . The eliminations so far 

leaves the following strategies: 

  

 3 1 0 2 

 0 0 3 1 

One can easily see that the strategy  and then  are eliminated next, yielding 

( ) as the only rationalizable strategies. The games with unique rationalizable 

strategy are called dominance-solvable. We got one of them here. 

2. [Midterm 1, 2011] Compute the set of all rationalizable strategies in the following 
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game. 
    

 

 

 

 

0,3 0,1 3,0 0,1 

3,0 0,2 2,4 1,1 

2,4 3,2 1,2 10,1 

0,5 5,3 1,2 0,10 

(a)	 Solution: Strategy  is strictly dominated by the mixed strategy 2 with 

2 () ∈ (13 12) and 2 () = 1  − 2 (). In  the  first round,  is therefore 

eliminated. (No other strategy is eliminated in that round.) In the second 

round,  is strictly dominated by  and eliminated. In the third round,  

is strictly dominated by 2 above and eliminated. In the fourth round,  is 

strictly dominated by  and eliminated. There are no other elimination, and 

the set of rationalizable strategies is { } × { }. 

3. [Midterm 1, 2001] Find all the pure strategies that are consistent with the common 

knowledge of rationality in the following game. (State the rationality/knowledge 

assumptions corresponding to each operation.) 

1\2    

 

 

 

1 1 0 4 2 2 

2 4 2 1 1 2 

1 0 0 1 0 2 

Solution: Clearly, one needs to compute rationalizable strategies and state the 

underlying rationalizability assumptions along the way. 

Round 1 For player 1,   strictly dominates . Since  Player 1 is rational, he  

will not play , and we eliminate this strategy: 

1\2    

 

 

1 1 0 4 2 2 

2 4 2 1 1 2 

Round 2 Since Player 2 knows that Player 1 is rational, he  knows  that  

Player 1 will not play . Given this, the mixed strategy that assigns prob-

ability 1/2 to each of the strategies  and  strictly dominates . Since  
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Player 2 is rational, in that case, he will not play . We  eliminate  this  

strategy: 
1\2   


 


 

1 1 0 4 

2 4 2 1 

Round 3 Since Player 1 knows that Player 2 is rational and that Player 

2 knows  that  Player  1 is  rational, he knows that Player 2 will not play 

. Given  this,   strictly dominates  . Since  Player 1 is rational, he  will  

not play  , either. We are left with 

1\2   

 2 4 2 1 
 

Round 4 Since Player 2 knows that Player 1 is rational, and that Player 

1 knows  that  Player  2 is rational,  and that Player 1 knows that  

Player 2 knows that Player 1 is rational, he  knows  that  Player  1  will  

not play  or . Given this,  strictly dominates  . Since  Player 2 is 

rational, he will not play  , either. He will play . 

1\2  

 2 4 

Thus, the only strategies that are consistent with the common knowledge of 

rationality are  for Player 1 and   for Player 2.  

4. [Midterm 1, 2011] Compute the set of all rationalizable strategies in the following 

game. Simultaneously, Alice and Bob select arrival times  and , respectively, 

for their meeting, where   ∈ {0 1 2     100}. The payoffs of Alice and Bob 

are ( 
2 − ( − )

2 
if   

 ( ) =  
− ( − )

2 
otherwise ( 

2 − ( − )
2 
if   

 ( ) =  
− ( − )

2 
otherwise, 

respectively. [Note that  and  are integers between 0 and 100.] 
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Solution: If the set of remaining strategies from the earlier rounds is {0    max}
for some max  0, then the max is strictly dominated by max −1 and is eliminated. 

(Proof: For  = max, 

 (max − 1 max) = 1   0 =   (max max)  

and for any   max, 

 (max − 1 ) =  − (max − 1 − )
2 
 − (max − )

2 
=  (max )  

showing that max −1 strictly dominates max for Alice.  The same argument applies  

for Bob.) 

Therefore, we eliminate 100 in round 1, 99 in round 2, . . . , and 1 in round 100. 

The set of rationalizable strategies is {0} for both players. 

5. [Midterm 1 make up, 2007] Consider the following game: 

1\2   


 


 

1 1 1 0 

0 1 0 10000 

(a) Compute the rationalizable strategies. 

Solution: First  and then  are eliminated. The rationalizable strategies 

are  for Player 1 and   for Player 2.  

(b) Now assume that players can tremble: when a player intends to play a strategy 

, with probability  = 0001,  Nature switches it to the  other strategy  0. For  

instance, if player 2 plays  (or intends to play ), with probability ,  

is played, with probability 1 − ,  is played. Assume that the trembling 

probabilities are independent. Compute the rationalizable strategies for this 

new game. 

Solution: Taking into the Nature’s move, the new game is as follows in 

normal form: 

1\2   


 1 −  1 − + 100002 1 −  + 10000 (1 − )  

 1 − + 10000 (1 − )  10000 (1 − )2 
+ 1  − 
 



77 5.4. EXERCISES 

To see how the payoffs are computed consider (). If  this  strategy  profile 

is intended, the outcome is ( ) with probability (1 − )2 
[nobody trem-

bles], () with probability (1 − )  [only Player 2 trembles], () with 

probability (1 − )  [only Player 1 trembles], and () with probability 2 

[everybody trembles]. We mix the payoff vectors with the above probabili-

ties to obtain the table. One can use the structure of payoffs to  shorten  the  

calculations. For example, Player 1 gets 1 if he does not tremble and gets 0 

otherwise, yielding 1 − . 

To compute the rationalizable strategies, note that  is still dominated by  

and is  eliminated in the  first round. In the second round, we cannot eliminate 

, however. Indeed, the payoffs from   and  are approximately 1 and 10, 

respectively. Hence,  is eliminated in the second round, yielding () as 

the only rationalizable strategy profile. 

This example shows that rationalizability may be sensitive to the possibility 

of trembling, depending on the relative magnitude of trembling probabilities 

and the payoff differences. 

5.4 Exercises 

1. [Homework 1, 2004] Consider the following game in normal form. 

    

 

 

 

 

0−1 4 4 0 0 2 0 
0 3 0 0 4 4 1 0 

5 2 2 0 1 3 1 3 

4 4 1 0 0 1 0 5 

(a) Iteratively eliminate all strictly dominated strategies; state the assumptions 

necessary for each elimination. 

(b) What are the rationalizable strategies? 
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2. Compute the set of rationalizable strategies in the following game: 

    

 

 

 

 

2 0 2 4 0 0 0 −1 
1 −2 −2 −2 4 2 0 1 
1 3 0 0 1 3 5 2 

0 5 −1 0 0 1 4 4 

3. [Midterm 1, 2000] Consider the following game. 

1\2    

 

 

 

3 2 4 0 1 1 

2 0 3 3 0 0 

1 1 0 2 2 3 

(a) Iteratively eliminate all the strictly dominated strategies. 

(b) State the rationality/knowledge assumptions corresponding to each elimina-

tion. 

(c) What are the rationalizable strategies? 

4. [Homework 1, 2004] Consider the game depicted in Figure 5.3 in extensive form 

(where the payoff of player 1 is written on top, and the payoff of 2 is on the 

bottom). 

(a) Write this game in strategic form. 

(b) What	 are the strategies that survive the iterative elimination of weakly-

dominated strategies in the following order: first eliminate all weakly-dominated 

strategies of player 1; then, eliminate all the strategies of player 2 that are 

weakly dominated in the remaining game; then, eliminate all the strategies 

of player 1 that are weakly dominated in the remaining game, and so on? 

5. [Homework 1, 2001] Compute the set of rationalizable strategies in the following 

game that is played in a class of  students where  ≥ 2: Without discussing with 

anyone, each student  is to write down a real number  ∈ [0 100] on a paper and 

submit it to the TA. The TA will then compute the average 

1 + 2 + · · ·+ 
̄ = 

 
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Figure 5.3: 

of these numbers. The students who submit the number that is closest to ̄3 will 

share the total payoff of 100, while the other students get 0. Everything described 

above is common knowledge. (Bonus: would the answer change if the students did 

not know , but it were common knowledge that  ≥ 2?) 

6. [Homework 2, 2011] There are  students. Simultaneously, each student  submits 

a real  number   ∈ [0 100] and each student receives the payoff of µ	 ¶2
2 

 (1     ) = 100  −  −  (1     )  
3 

where  finds the median. 

(a) Write this game formally in normal form. 

(b) Compute the sets of rationalizable strategies and Nash equilibria. 

(c) Answer part (b) assuming that there are	  ∈ (0 (− 1) 2) mischievous 

students with payoff ( −  (1     ))
2 
. 

(d) Bonus: Answer part (c) for  ∈ (2 ). 
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7. [Midterm 1, 2007] Compute the set of all rationalizable strategies in Exercise 4 in 

Section 3.5.) 

8. [Midterm 1, 2005] Compute the set of all rationalizable strategies in the game in 

Figure 3.14. (See Exercise 2 in Section 3.5.) 

9. [Homework 1, 2001] Consider the game in Figure 5.4. 

1 

L 

R 

(2,2) 

2 

r
l 

(0,0) 
u 

1 

1 


   

(1,3) (3,1) (3,3) (1,1) 

Figure 5.4: 

(a) Write this game in the strategic form. 

(b) What	 are the strategies that survive the iterative elimination of weakly-

dominated strategies in the following order: first eliminate all weakly-dominated 

strategies of player 1; then, eliminate all the strategies of player 2 that are 

weakly dominated in the remaining game; then, eliminate all the strategies 

of player 1 that are weakly dominated in the remaining game, and so on? 

10.	 [Homework 1, 2002] Consider the game depicted in Figure 5.5 in extensive form. 

(a) Write this game in strategic form. 

(b) What	 are the strategies that survive the iterative elimination of weakly-

dominated strategies in the following order: first eliminate all weakly-dominated 

strategies of player 1; then, eliminate all the strategies of player 2 that are 
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Figure 5.6: 

weakly dominated in the remaining game; then, eliminate all the strategies 

of player 1 that are weakly dominated in the remaining game, and so on? 

11.	 [Homework 1, 2006] Consider the game depicted in Figure 5.6 in extensive form. 

(a) Write this game in strategic form. 

(b) Iteratively eliminate all weakly dominated strategies. 

(c) What are the rationalizable strategies? 

12.	 Consider any collection of sets 1 ⊆ 1,  . . . , ⊆  such that there exists no 

 ∈  that is strictly dominated when the others’ strategies are restricted to be 



82 CHAPTER 5. RATIONALIZABILITY 

in −. That  is,  for  every   ∈  and every  mixed strategy   of player , there  

exists a strategy profile − of other players such that  ∈  for every  =6  and X 
 ( −) ≥  ()  ( −)  

∈ 

Show that each  ∈  is rationalizable. 

13.	 Show that the set of rationalizable strategies satisfy the above property that no 

rationalizable strategy is dominated when others’ strategies are resticted to be 

rationalizable. 
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