14.123 Problem Set 2 Solution
 Suehyun Kwon

Q1. There are two urns, A and B, each consisting of 100 balls, some are black and some are red. In urn A there are 30 red balls, but the number of red balls in urn B is not known. We draw a ball from urn A with color α and a ball from urn B with color β. Consider the following acts:

$$
\begin{aligned}
& f_{A, r}=\left\{\begin{array}{ll}
100 & \text { if } \alpha=\text { red } \\
0 & \text { if } \alpha=\text { black }
\end{array} \quad f_{A, b}= \begin{cases}0 & \text { if } \alpha=\text { red } \\
100 & \text { if } \alpha=\text { black }\end{cases} \right. \\
& f_{B, r}=\left\{\begin{array}{ll}
110 & \text { if } \beta=\text { red } \\
0 & \text { if } \beta=\text { black }
\end{array} \quad f_{B, b}= \begin{cases}0 & \text { if } \beta=\text { red } \\
110 & \text { if } \beta=\text { black }\end{cases} \right.
\end{aligned}
$$

Let c be the choice function induced by \succeq. Find the sets $c\left(\left\{f_{A, r}, f_{A, b}, f_{B, r}, f_{B, b}\right\}\right)$ that are consistent with $110 \succ 100 \succ 0$ and Savages postulates.

In the terminology of Lecture 3, the set of states is

$$
\{(\alpha, \beta)\}=\{(r, r),(r, b),(b, r),(b, b)\}
$$

and the set of consequences is $C=\{0,100,110\}$. Under Savage's postulates, there exists a utility function $u: C \rightarrow \mathbb{R}$ and a probability measure $p: 2^{S} \rightarrow$ $[0,1]$ such that

$$
f \succeq g \Longleftrightarrow \sum_{c \in C} p(\{s \mid f(s)=c\}) u(c) \geq \sum_{c \in C} p(\{s \mid g(s)=c\}) u(c)
$$

From $110 \succ 100 \succ 0$, we have $u(110)>u(100)>u(0)$. For any probability measure p, we have

$$
\begin{aligned}
& 0.7 * u(100)+0.3 * u(0) \\
= & \sum_{c \in C} p\left(\left\{s \mid f_{A, b}(s)=c\right\}\right) u(c) \\
> & \sum_{c \in C} p\left(\left\{s \mid f_{A, r}(s)=c\right\}\right) u(c) \\
= & 0.3 * u(100)+0.7 * u(0)
\end{aligned}
$$

and $f_{A, b} \succ f_{A, r}$.
On the other hand, the expected utility from $f_{B, r}$ and $f_{B, b}$ are

$$
\begin{aligned}
& \sum_{c \in C} p\left(\left\{s \mid f_{B, r}(s)=c\right\}\right) u(c)=p(\beta=\text { red }) u(110)+p(\beta=\text { black }) u(0) \\
& \sum_{c \in C} p\left(\left\{s \mid f_{B, b}(s)=c\right\}\right) u(c)=p(\beta=\text { red }) u(0)+p(\beta=\text { black }) u(110)
\end{aligned}
$$

respectively.
The preference among $f_{A, b}, f_{B, r}, f_{B, b}$ depends on the probability measure and the utility function, and the possible choice sets $c\left(\left\{f_{A, r}, f_{A, b}, f_{B, r}, f_{B, b}\right\}\right)$ are
$\left\{f_{A, b}\right\},\left\{f_{B, r}\right\},\left\{f_{B, b}\right\},\left\{f_{A, b}, f_{B, r}\right\},\left\{f_{A, b}, f_{B, b}\right\},\left\{f_{B, r}, f_{B, b}\right\},\left\{f_{A, b}, f_{B, r}, f_{B, b}\right\}$.
The following is the example of p and u for each choice set:

$$
\begin{aligned}
& \left\{f_{A, b}\right\}: u(0)=0, u(100)=0.9, u(110)=1, p=0.5 \\
& \left\{f_{B, r}\right\}: u(0)=0, u(100)=0.9, u(110)=1, p=0.7 \\
& \left\{f_{B, b}\right\}: u(0)=0, u(100)=0.9, u(110)=1, p=0.3 \\
& \left\{f_{A, b}, f_{B, r}\right\}: u(0)=0, u(100)=0.9, u(110)=1, p=0.63 \\
& \left\{f_{A, b}, f_{B, b}\right\}: u(0)=0, u(100)=0.9, u(110)=1, p=0.37 \\
& \left\{f_{B, r}, f_{B, b}\right\}: u(0)=0, u(100)=0,7, u(110)=1, p=0.5 \\
& \left\{f_{A, b}, f_{B, r}, f_{B, b}\right\}: u(0)=0, u(100)=1, u(110)=1.4, p=0.5
\end{aligned}
$$

Q2. (6.C. 19 in MWG) Suppose that an individual has a Bernoulli utility function $u(x)=-e^{-\alpha x}$ where $\alpha>0$. His (nonstochastic) initial wealth is given by w. There is one riskless asset and there are N risky assets. The return per unit invested on the riskless asset is r. The returns of the risky assets are independent and normally distributed with means $\mu=$ $\left(\mu_{1}, \cdots, \mu_{N}\right)$. Derive the demand function for these $N+1$ assets.

Let $\left(\sigma_{1}^{2}, \cdots, \sigma_{N}^{2}\right)$ be the variances of the risky assets. When the portfolio is $\left(\alpha_{0}, \cdots, \alpha_{N}\right)$ with $\sum \alpha_{i}=1$, the expected return is

$$
\begin{aligned}
& \mathbb{E}\left[-\exp \left(-\alpha w\left(\alpha_{0}, \cdots, \alpha_{N}\right)^{\prime}\left(r, \cdots, r_{N}\right)\right)\right] \\
= & -\exp \left(-\alpha w\left(\alpha_{0} r+\sum_{i>0} \alpha_{i}\left(\mu_{i}-\frac{1}{2} \alpha w \alpha_{i} \sigma_{i}^{2}\right)\right)\right) .
\end{aligned}
$$

The expected return is maximized when

$$
\alpha_{0} r+\sum_{i>0} \alpha_{i}\left(\mu_{i}-\frac{1}{2} \alpha w \alpha_{i} \sigma_{i}^{2}\right)
$$

is maximized, and the constraint is

$$
\sum \alpha_{i}=1
$$

We have

$$
\frac{\partial}{\partial \alpha_{i}}:-r+\mu_{i}-\alpha w \alpha_{i} \sigma_{i}^{2}=0,
$$

and

$$
\alpha_{i}=\frac{\mu_{i}-r}{\alpha w \sigma_{i}^{2}} .
$$

Q3. (6.D.3 in MWG) Verify that if a distribution $G(\cdot)$ is an elementary increase in risk from a distribution $F(\cdot)$, then $F(\cdot)$ second-order stochastically dominates $G(\cdot)$.

Let $G(\cdot)$ be an elementary increase from $F(\cdot)$ on the interval $\left[x^{\prime}, x^{\prime \prime}\right]$, and define $I(x)=\int_{x^{\prime}}^{x}[F(t)-G(t)] d t . I\left(x^{\prime}\right)=0$, and by the definition of G, $I\left(x^{\prime \prime}\right)=0, I(x) \leq 0, \forall x \in\left[x^{\prime}, x^{\prime \prime}\right]$.
$\int_{x^{\prime}}^{x^{\prime \prime}} u(x) d(F(x)-G(x))=-\int_{x^{\prime}}^{x^{\prime \prime}} u^{\prime}(x)(F(x)-G(x)) d x=\int_{x^{\prime}}^{x^{\prime \prime}} u^{\prime \prime}(x) I(x) d x$, and together with $u^{\prime \prime}<0$,

$$
\int_{x^{\prime}}^{x^{\prime \prime}} u(x) d(F(x)-G(x)) \geq 0
$$

for any nondecreasing concave function u.
Specifically, define $G(\cdot)$ as

$$
G(x)=\left\{\begin{array}{cc}
F(x) & \text { if } x \notin\left[x^{\prime}, x^{\prime \prime}\right) \\
\frac{\int_{x^{\prime}}^{x^{\prime \prime}} F(x) d x}{x^{\prime \prime}-x^{\prime}} & \text { if } x \in\left[x^{\prime}, x^{\prime \prime}\right) .
\end{array}\right.
$$

This corresponds to $y \sim G, x \sim F, y=x+z$ with

$$
z \left\lvert\, x= \begin{cases}x^{\prime}-x & \text { with probability } \frac{\frac{x^{\prime \prime}-x}{x^{\prime \prime}-x^{\prime}}}{x^{\prime \prime}-x} \\ \text { with probability } \frac{x-x^{\prime}}{x^{\prime \prime}-x^{\prime}}\end{cases}\right.
$$

Q4. Consider a monopolist who faces a stochastic demand. If he produces q units, he incurs a zero marginal cost and sells the good at price $P(\theta, q)$ where $\theta \in[\underline{\theta}, \bar{\theta}]$ is an unknown demand shock where P and C twice differentiable. Assume that the profit function is strictly concave in q for each given θ, and $P(\theta, q)+q P_{q}(\theta, q)$ is increasing in θ, where P_{q} is the derivative of P with respect to q. The monopolist is expected profit maximizer.
(a) Show that there exists a unique optimal production level q^{*}.
(b) Show that if the distribution of θ changes from G to F where F first-order stochastically dominates G, then the optimal production level q^{*} weakly increases.
(c) Take $P(\theta, q)=\phi(\theta)-\gamma(q)$. Suppose that there are two identical monopolists as above in two independent but identical markets. Find conditions under which the monopolists have a strict incentive to merge and share the profit from each market equally.
(a) Given the zero marginal cost, the monopolist maximizes $\int q P(\theta, q) d F(\theta)$. The profit function is strictly concave in q for every θ

$$
\Longleftrightarrow \frac{\partial^{2}}{\partial q^{2}}(q P(\theta, q))<0 \forall \theta, q,
$$

and we have

$$
\int \frac{\partial^{2}}{\partial q^{2}}(q P(\theta, q)) d F(\theta)<0
$$

The maximization problem is strictly concave, and there exists a unique optimum q^{*}.
(b) Let q_{G} and q_{F} be the optimum for G and F, respectively. We have

$$
\int\left(P\left(\theta, q_{G}\right)+q_{G} P_{q}\left(\theta, q_{G}\right)\right) d G(\theta)=0 .
$$

Since $P(\theta, q)+q P_{q}(\theta, q)$ is increasing in θ, when F first-order stochastically dominates G,

$$
\begin{aligned}
0 & =\int\left(P\left(\theta, q_{F}\right)+q_{F} P_{q}\left(\theta, q_{F}\right)\right) d F(\theta) \\
& =\int\left(P\left(\theta, q_{G}\right)+q_{G} P_{q}\left(\theta, q_{G}\right)\right) d G(\theta) \\
& \leq \int\left(P\left(\theta, q_{G}\right)+q_{G} P_{q}\left(\theta, q_{G}\right)\right) d F(\theta)
\end{aligned}
$$

By the concavity of the maximization problem, $\int\left(P(\theta, q)+q P_{q}(\theta, q)\right) d F(\theta)$ is strictly decreasing in q, and the optimum for F weakly increases.
(c) If two monopolists share the profit equally, their expected profit is

$$
\begin{aligned}
& \frac{1}{2} \max _{q_{1}, q_{2}} \mathbb{E}\left[q_{1}\left(\phi\left(\theta_{1}\right)-\gamma\left(q_{1}\right)\right)+q_{2}\left(\phi\left(\theta_{2}\right)-\gamma\left(q_{2}\right)\right)\right] \\
= & \frac{1}{2} \max _{q_{1}, q_{2}}\left(\left(q_{1}+q_{2}\right) \mathbb{E}[\phi(\theta)]-q_{1} \gamma\left(q_{1}\right)-q_{2} \gamma\left(q_{2}\right)\right) .
\end{aligned}
$$

The profit function is concave in q, which implies that $-q \gamma(q)$ is concave in q. By Jensen's inequality, the optimal q_{1} is the same as q_{2}. Let $q=q_{1}+q_{2}$, then

$$
\begin{aligned}
& \frac{1}{2} \max _{q_{1}, q_{2}} \mathbb{E}\left[q_{1}\left(\phi\left(\theta_{1}\right)-\gamma\left(q_{1}\right)\right)+q_{2}\left(\phi\left(\theta_{2}\right)-\gamma\left(q_{2}\right)\right)\right] \\
= & \frac{1}{2} \max _{q}\left(q \mathbb{E}[\phi(\theta)]-q \gamma\left(\frac{q}{2}\right)\right) \\
= & \max _{q}\left(\frac{q}{2} \mathbb{E}[\phi(\theta)]-\frac{q}{2} \gamma\left(\frac{q}{2}\right)\right),
\end{aligned}
$$

and the monopolists choose the same quantity as before. They will never have a strict incentive to merge.

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

