14.123 Microeconomics III—Problem Set 3

Muhamet Yildiz

Instructions. Each question is 33 points. Good Luck!

1. Let P be the set of lotteries over $\{a, b, c\} \times\{L, M, R\}$. In which of the following pairs of games the players' preferences over P are the same?
(a)

	L	M	R		L	M	R
a	2,-2	1,1	-3,7	a	12,-1	5,0	-3,2
b	1,10	0,4	0,4	b	5,3	3,1	3,1
c	-2,1	1,7	-1,-5	c	-1,0	5,2	1,-2

(b)

	L	M R		L		M	R
a	1,2	7,0	4,-1	a	1,5	7,1	4,-1
b	6,1	2,2	8,4	b	6,3	2,4	8,8
c	3,-1	9,2	5,0	c	3,-1	9,5	5,1

2. Let P be the set of all lotteries $p=\left(p_{x}, p_{y}, p_{z}\right)$ on a set $C=\{x, y, z\}$ of consequences. Below, you are given pairs of indifference sets on P. For each pair, check whether the indifference sets belong to a preference relation that has a Von-Neumann and Morgenstern representation (i.e. expected utility representation). If the answer is Yes, provide a Von-Neumann and Morgenstern utility function; otherwise show which Von-Neumann and Morgenstern axiom is violated. (In the figures below, setting $p_{z}=$ $1-p_{x}-p_{y}$, we describe P as a subset of \mathbb{R}^{2}.)
(a) $I_{1}=\left\{p \mid p_{x}=2 p_{y}+1\right\}$ and $I_{2}=\left\{p \mid p_{x}=4 p_{y}+1\right\}$
(b) $I_{1}=\left\{p \mid p_{x}=2 p_{y}+1\right\}$ and $I_{2}=\left\{p \mid p_{x}=2 p_{y}\right\}$
(c) $I_{1}=\left\{p \mid p_{x} \leq 1 / 2\right\}$ and $I_{2}=\left\{p \mid p_{x}>1 / 2\right\}$
(d) $I_{1}=\left\{p \mid p_{y}=\left(p_{x}\right)^{2}+1 / 2\right\}$ and $I_{2}=\left\{p \mid p_{y}=\left(p_{x}\right)^{2}\right\}$
3. On a given set of lotteries, find a discontinuous preference relation \succeq that satisfies the independence axiom.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

