14.123 Microeconomics III—Problem Set 3

Muhamet Yildiz

Instructions. Each question is 33 points. Good Luck!

1. Let P be the set of lotteries over $\{a, b, c\} \times \{L, M, R\}$. In which of the following pairs of games the players' preferences over P are the same?

(a)

		\mathbf{L}	Μ	R			\mathbf{L}	Μ	\mathbf{R}
	\mathbf{a}	2,-2	$1,\!1$	-3,7		a	12,-1	5,0	-3,2
	b	1,10	0,4	0,4	· ·	b	$5,\!3$	3,1	3,1
	с	-2,1	1,7	-1,-5]	c	-1,0	5,2	1,-2
(b)									
< /		\mathbf{L}	Μ	R			\mathbf{L}	Μ	\mathbf{R}
	a	1,2	7,0	4,-1		a	1,5	7,1	4,-1
	b	6,1	2,2	8,4		b	6,3	2,4	8,8
	c	3,-1	9,2	5,0		c	3,-1	9,5	5,1

- 2. Let P be the set of all lotteries $p = (p_x, p_y, p_z)$ on a set $C = \{x, y, z\}$ of consequences. Below, you are given pairs of indifference sets on P. For each pair, check whether the indifference sets belong to a preference relation that has a Von-Neumann and Morgenstern representation (i.e. expected utility representation). If the answer is Yes, provide a Von-Neumann and Morgenstern utility function; otherwise show which Von-Neumann and Morgenstern axiom is violated. (In the figures below, setting $p_z = 1 - p_x - p_y$, we describe P as a subset of \mathbb{R}^2 .)
 - (a) $I_1 = \{p | p_x = 2p_y + 1\}$ and $I_2 = \{p | p_x = 4p_y + 1\}$
 - (b) $I_1 = \{p | p_x = 2p_y + 1\}$ and $I_2 = \{p | p_x = 2p_y\}$
 - (c) $I_1 = \{p | p_x \le 1/2\}$ and $I_2 = \{p | p_x > 1/2\}$
 - (d) $I_1 = \{p|p_y = (p_x)^2 + 1/2\}$ and $I_2 = \{p|p_y = (p_x)^2\}$
- 3. On a given set of lotteries, find a discontinuous preference relation ≥ that satisfies the independence axiom.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.