14.123 Microeconomic Theory III. 2014

Problem Set 1. Solution.

Anton Tsoy

1. See solution by Suehyun Kwon of Problem Set 1, 2010, Question 2.

2.

2.1 i. Yes. For example, u(x) = 3, u(y) = 2, u(z) = 0.

ii. No. Suppose that such expected utility representation exists. Without loss of generality, normalize u(z) = 0 and from the ordering of the lotteries it follows

$$\frac{u(x)}{4} + \frac{u(y)}{4} > \frac{3u(x)}{4} > \frac{5u(x)}{6} + \frac{u(y)}{6} > \frac{u(x)}{2} + \frac{u(y)}{3}$$

From the first inequality, -2u(x) + u(y) > 0, from the third inequality 2u(x) - u(y) > 0 which contradicts the first inequality.

2.2 i. Yes, take u(x) = 2, u(y) = 1, u(z) = 0.

ii. No. Consider p = (1, 0, 0), q = (0, 0, 1) which are equivalent and consider a half-half mixture of them with r = (0, 1, 0). Then p' = (1/2, 1/2, 0) and q' = (0, 1/2, 1/2) lie on the different indifference sets, which contradicts IA. iii. No, as the indifference sets are not straight lines which contradicts IA.

- 2.3 Consider lexicographic preferences: $p \succ q$ if and only if p(x) > q(x) or p(x) = q(x) and p(y) > q(y). Since this preference is discontinuous, there is no representation, let alone expected utility representation.
- In this question I refer to the second condition in Definition 3.2 in Lecture notes as
 (*). I will also use the following consequence of (*).

Claim. Consider $B, C, D \in \mathcal{A}$ such that $D \subseteq B \cap C$, $D \subseteq B \cap C$. Then $B \succeq C \iff B \setminus D \succeq C \setminus D$.

I refer to this claim by (**). To see that it is true, observe that $B = (B \setminus D) \cup D$ and $C = (C \setminus D) \cup D$. Since $(B \setminus D) \cap D = \emptyset$ and $(C \setminus D) \cap D = \emptyset$, it follows by (*) that $B \succeq C \iff B \setminus D \succeq C \setminus D$. 3.1 Let $X = A_1 \cap B_2$, $A'_1 = A_1 \setminus X$, $B'_2 = B_2 \setminus X$. By (**), $A_1 \cup A_2 \succeq B_1 \cup B_2 \iff A'_1 \cup A_2 \succeq B_1 \cup B'_2$. Then

$$A_1' \cup A_2 \succeq A_1' \cup B_2 = A_1 \cup B_2' \succeq (B_1 \setminus B_2') \cup B_2' = B_1 \cup B_2'$$

where I used twice (*) to get inequalities and equalities are simple set manipulations.

3.2 Denote by \geq preference relation " \succeq given D". Completeness and transitivity of \geq follow from completeness and transitivity of \succeq . Consider $B, C, E \in \mathcal{A}$ such that $B \cap E = C \cap E = \emptyset$. Then condition 2 in the definition of the qualitative probability is obtained by the following line of inequalities.

$$B \stackrel{\cdot}{\geq} C \iff B \cap D \stackrel{\cdot}{\succeq} C \cap D \iff (B \cap D) \cup E \stackrel{\cdot}{\succeq} (C \cap D) \cup E \iff$$

$$(B \cap D) \cup (E \cap D) \cup (E \setminus D) \succeq (C \cap D) \cup (E \cap D) \cup (E \setminus D) \iff$$

$$(B \cap D) \cup (E \cap D) \succeq (C \cap D) \cup (E \cap D) \iff B \cup E \ge C \cup E,$$

where I use (*) and set manipulations to obtain the equivalence relation. $B \geq \emptyset$ follows from the corresponding property of \succeq , and $S \geq \emptyset$ follows from D being non-null.

3.3 Suppose to contradiction that $A_1 \succeq B_1$. By transitivity of \sim , for all $1 \le i \le n$, $A_i \succeq B_i$. By the argument as in part 3.1 of this question, it is possible to show that $A_1 \cup A_2 \succeq B_1 \cup B_2$ and iteratively applying this inequality I get that $S = \bigcup_{i=1}^n A_i \succeq \bigcup_{i=1}^n B_i = S$, contradiction.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.