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Problem Set 1. Solution.

Anton Tsoy

1. See solution by Suehyun Kwon of Problem Set 1, 2010, Question 2.

2.

2.1 i. Yes. For example, u(x) = 3, u(y) = 2, u(z) = 0.

ii. No. Suppose that such expected utility representation exists. Without

loss of generality, normalize u(z) = 0 and from the ordering of the lotteries it

follows

u(x) u(y) 3u(x) 5u(x) u(y) u(x) u(y)
+ > > + > + .

4 4 4 6 6 2 3

From the first inequality, −2u(x) +u(y) > 0, from the third inequality 2u(x)−
u(y) > 0 which contradicts the first inequality.

2.2 i. Yes, take u(x) = 2, u(y) = 1, u(z) = 0.

ii. No. Consider p = (1, 0, 0), q = (0, 0, 1) which are equivalent and consider

a half-half mixture of them with r = (0, 1, 0). Then p′ = (1/2, 1/2, 0) and

q′ = (0, 1/2, 1/2) lie on the different indifference sets, which contradicts IA.

iii. No, as the indifference sets are not straight lines which contradicts IA.

2.3 Consider lexicographic preferences: p � q if and only if p(x) > q(x) or

p(x) = q(x) and p(y) > q(y). Since this preference is discontinuous, there

is no representation, let alone expected utility representation.

3. In this question I refer to the second condition in Definition 3.2 in Lecture notes as

(*). I will also use the following consequence of (*).

Claim. Consider B,C,D ∈ A such that D ⊆ B ∩ C, D ⊆ B ∩ C. Then B�̇C ⇐⇒
B\D�̇C\D.

I refer to this claim by (**). To see that it is true, observe that B = (B\D) ∪ D

and C = (C\D) ∪D. Since (B\D) ∩D = ∅ and (C\D) ∩D = ∅, it follows by (*)

that B�̇C ⇐⇒ B\D�̇C\D.
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3.1 Let X = A1 ∩ B2, A
′
1 = A1\X, B2

′ = B2\X. By (**), A1 ∪ A ˙
2�B1 ∪ B2 ⇐⇒

A′
1 ∪ A ˙

2�B1 ∪B2
′ . Then

A′
1 ∪ A ˙

2�A′
1 ∪B2 = A1 ∪B2

′ �̇(B1\B2
′ ) ∪B2

′ = B1 ∪B2
′

where I used twice (*) to get inequalities and equalities are simple set manip-

ulations.

3.2 Denote by ≥̇ preference relation “�̇ given D”. Completeness and transitivity

of ≥̇ follow from completeness and transitivity of �̇. Consider B,C,E ∈ A
such that B ∩ E = C ∩ E = ∅. Then condition 2 in the definition of the

qualitative probability is obtained by the following line of inequalities.

B≥̇C ⇐⇒ B ∩D�̇C ∩D ⇐⇒ (B ∩D) ∪ E�̇(C ∩D) ∪ E ⇐⇒

(B ∩D) ∪ (E ∩D) ∪ (E\D)�̇(C ∩D) ∪ (E ∩D) ∪ (E\D) ⇐⇒

(B ∩D) ∪ (E ∩D)�̇(C ∩D) ∪ (E ∩D) ⇐⇒ B ∪ E≥̇C ∪ E,

where I use (*) and set manipulations to obtain the equivalence relation. B≥∅˙
follows from the corresponding property of �̇, and S>̇∅ follows from D being

non-null.

3.3 Suppose to contradiction that A1�̇B1. By transitivity of ∼̇, for all 1 ≤ i ≤ n,

Ai�̇Bi. By the argument as in part 3.1 of this question, it is possible to

show that A1 ∪A2�̇B1 ∪B2 and iteratively applying this inequality I get that

S = ∪n
i=1Ai�̇ ∪n

i=1 Bi = S, contradiction.
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