14.123 Microeconomic Theory III. 2014

Problem Set 1. Solution.

Anton Tsoy

1. See solution by Suehyun Kwon of Problem Set 1, 2010, Question 2.
2.

2.1 i. Yes. For example, $u(x)=3, u(y)=2, u(z)=0$.
ii. No. Suppose that such expected utility representation exists. Without loss of generality, normalize $u(z)=0$ and from the ordering of the lotteries it follows

$$
\frac{u(x)}{4}+\frac{u(y)}{4}>\frac{3 u(x)}{4}>\frac{5 u(x)}{6}+\frac{u(y)}{6}>\frac{u(x)}{2}+\frac{u(y)}{3} .
$$

From the first inequality, $-2 u(x)+u(y)>0$, from the third inequality $2 u(x)-$ $u(y)>0$ which contradicts the first inequality.
2.2 i. Yes, take $u(x)=2, u(y)=1, u(z)=0$.
ii. No. Consider $p=(1,0,0), q=(0,0,1)$ which are equivalent and consider a half-half mixture of them with $r=(0,1,0)$. Then $p^{\prime}=(1 / 2,1 / 2,0)$ and $q^{\prime}=(0,1 / 2,1 / 2)$ lie on the different indifference sets, which contradicts IA. iii. No, as the indifference sets are not straight lines which contradicts IA.
2.3 Consider lexicographic preferences: $p \succ q$ if and only if $p(x)>q(x)$ or $p(x)=q(x)$ and $p(y)>q(y)$. Since this preference is discontinuous, there is no representation, let alone expected utility representation.
3. In this question I refer to the second condition in Definition 3.2 in Lecture notes as $\left(^{*}\right)$. I will also use the following consequence of $\left({ }^{*}\right)$.

Claim. Consider $B, C, D \in \mathcal{A}$ such that $D \subseteq B \cap C, D \subseteq B \cap C$. Then $B \succeq C \Longleftrightarrow$ $B \backslash D \succeq C \backslash D$.

I refer to this claim by $\left(^{* *}\right)$. To see that it is true, observe that $B=(B \backslash D) \cup D$ and $C=(C \backslash D) \cup D$. Since $(B \backslash D) \cap D=\emptyset$ and $(C \backslash D) \cap D=\emptyset$, it follows by (*) that $B \succeq C \Longleftrightarrow B \backslash D \succeq C \backslash D$.
3.1 Let $X=A_{1} \cap B_{2}, A_{1}^{\prime}=A_{1} \backslash X, B_{2}^{\prime}=B_{2} \backslash X$. By $\left({ }^{* *}\right), A_{1} \cup A_{2} \succeq B_{1} \cup B_{2} \Longleftrightarrow$ $A_{1}^{\prime} \cup A_{2} \succeq B_{1} \cup B_{2}^{\prime}$. Then

$$
A_{1}^{\prime} \cup A_{2} \grave{\succeq} A_{1}^{\prime} \cup B_{2}=A_{1} \cup B_{2}^{\prime} \grave{\succeq}\left(B_{1} \backslash B_{2}^{\prime}\right) \cup B_{2}^{\prime}=B_{1} \cup B_{2}^{\prime}
$$

where I used twice $\left(^{*}\right)$ to get inequalities and equalities are simple set manipulations.
3.2 Denote by $\dot{\geq}$ preference relation " $\grave{\succeq}$ given D ". Completeness and transitivity of \geq follow from completeness and transitivity of $\grave{\succeq}$. Consider $B, C, E \in \mathcal{A}$ such that $B \cap E=C \cap E=\emptyset$. Then condition 2 in the definition of the qualitative probability is obtained by the following line of inequalities.

$$
\begin{gathered}
B \dot{\geq} C \Longleftrightarrow B \cap D \grave{\succeq} \cap D \Longleftrightarrow(B \cap D) \cup E 亡(C \cap D) \cup E \Longleftrightarrow \\
(B \cap D) \cup(E \cap D) \cup(E \backslash D) \grave{(C \cap D) \cup(E \cap D) \cup(E \backslash D) \Longleftrightarrow} \\
\quad(B \cap D) \cup(E \cap D) \grave{\succeq}(C \cap D) \cup(E \cap D) \Longleftrightarrow B \cup E \dot{C} \cup E
\end{gathered}
$$

where I use $\left({ }^{*}\right)$ and set manipulations to obtain the equivalence relation. $B \dot{\geq} \emptyset$ follows from the corresponding property of \succeq, and $S \dot{\emptyset}$ follows from D being non-null.
3.3 Suppose to contradiction that $A_{1} \succ B_{1}$. By transitivity of $\dot{\sim}$, for all $1 \leq i \leq n$, $A_{i} \succ B_{i}$. By the argument as in part 3.1 of this question, it is possible to show that $A_{1} \cup A_{2} \dot{\succ} B_{1} \cup B_{2}$ and iteratively applying this inequality I get that $S=\cup_{i=1}^{n} A_{i} \succ \cup_{i=1}^{n} B_{i}=S$, contradiction.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

