14.123 Microeconomic Theory III. 2014

Problem Set 2. Solution.

Anton Tsoy

1. In all counter-examples, I use $s=\frac{1}{3}, c=1$ and suppose that whenever indifferent between n and n^{\prime}, Ann chooses cruder partition. In counter-examples, acts are constant on $\left[0, \frac{1}{2}\right]$ and $\left(\frac{1}{2}, 1\right]$ and so, it is optimal for Ann to choose only between $n=0,1$. I also use notation $\mathbb{E}[u(f(s)): B]=\int_{B} u(f(s)) d s$ and $\mathbb{E}_{n}[u(f(s)): B]=$ $\int_{B \cap\left(\frac{1}{4}, \frac{1}{2}\right)} u(f(s)) d s$
1.1 Completeness holds. Given n the preferences are complete. Since $u(f(s))$ is bounded, without loss of generality, I can restrict the choice of n to some finite set and so, optimal n exists.
1.2 Transitivity fails. Consider $f(s)=\left\{\begin{array}{ll}-1 & s<\frac{1}{2} \\ 1 & s \geq \frac{1}{2} ;\end{array}, h(s)=\left\{\begin{array}{ll}2 & s<\frac{1}{2}, \\ -2 & s \geq \frac{1}{2} ;\end{array}, g(s)=\right.\right.$ 0 . Then $f \sim_{s} g$ (for $n=0$, both give expected utility 0 ; for $n=1$, Ann's expected utility is $\frac{1}{2}<c$ and so, $n=0$ is optimal)
and $g \sim_{s} h$ (for $n=0$, both give expected utility 0 ; for $n=1$, Ann's expected utility is $\frac{1}{2} 0+\frac{1}{2} 2=1=c$ and so, $n=0$ is optimal),
but $h \succ_{s} f$ (for $n=0$, both give expected utility 0 ; for $n=1$, Ann's expected utility is $\frac{1}{2} 1+\frac{1}{2} 2=\frac{3}{2}>c$ and so, $n=1$ is optimal).
1.3 P2 holds. Let $f, f^{\prime}, g, g^{\prime}$ be defined as in P 2 in the lecture notes for some $B \subset S$. Let n and n^{\prime} be optimal levels of contemplation for comparison of f and g, and f^{\prime} and g^{\prime}, respectively. Observe that $n=n^{\prime}$, since

$$
\begin{aligned}
& \mathbb{E}_{n} u(f(s))-\mathbb{E}_{n} u(g(s))=\mathbb{E}_{n}[u(f(s)): B]-\mathbb{E}_{n}[u(g(s)): B]= \\
= & \mathbb{E}_{n}\left[u\left(f^{\prime}(s)\right): B\right]-\mathbb{E}_{n}\left[u\left(g^{\prime}(s)\right): B\right]=\mathbb{E}_{n} u\left(f^{\prime}(s)\right)-\mathbb{E}_{n} u\left(g^{\prime}(s)\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
& f \succeq_{s} g \Longleftrightarrow \mathbb{E}_{n} u(f(s)) \geq \mathbb{E}_{n} u(g(s)) \Longleftrightarrow \mathbb{E}_{n}[u(f(s)): B] \geq \mathbb{E}_{n}[u(g(s)): B] \Longleftrightarrow \\
& \Longleftrightarrow \mathbb{E}_{n}\left[u\left(f^{\prime}(s)\right): B\right] \geq \mathbb{E}_{n}\left[u\left(g^{\prime}(s)\right): B\right] \Longleftrightarrow \mathbb{E}_{n} u\left(f^{\prime}(s)\right) \geq \mathbb{E}_{n} u\left(g^{\prime}(s)\right) \Longleftrightarrow f^{\prime} \succeq_{s} g^{\prime} .
\end{aligned}
$$

1.4 P3 holds. Consider x, x^{\prime} and $f=x_{\mid B}^{h}, f^{\prime}=x_{\mid B}^{\prime h}$ for some act $h \in F$ and $B \subset S$. Observe that $n=0$ is optimal for comparison of f and f^{\prime}, as f is (weakly) better than f^{\prime} state by state. Therefore, $f \succ_{s} f^{\prime} \Longleftrightarrow \mathbb{E} u(f(s))>$ $\mathbb{E} u\left(f^{\prime}(s)\right) \Longleftrightarrow x \succ x^{\prime}$, since B is non-null.
1.5 P4 fails. Consider $A=\left[0, \frac{1}{2}\right], B=\left(\frac{1}{2}, 1\right]$, and $x=1, x^{\prime}=-1, y=2, y^{\prime}=-2$. Then $f_{A} \sim_{s} f_{B}$ (for $n=0$, both give expected utility 0 ; for $n=1$, Ann's expected utility is 1 , but she needs to incur contemplation costs $c=1$ and so, $n=0$ is optimal),
but $g_{A} \succ_{s} g_{B}$ (as before, for $n=0$, both give expected utility 0 ; for $n=1$ Ann's expected utility is 2 which after subtracting contemplation costs gives payoff 1 and so, $n=1$ is optimal).
1.6 P5 holds by the assumption that Z contains at least two elements.
2. I am looking for a concave utility function $u \in \mathcal{U}$ that satisfies $\frac{1}{2} u\left(\omega_{0}+G\right)+\frac{1}{2} u\left(\omega_{0}-\right.$ $L)=u\left(\omega_{0}\right)$ and $.6 u\left(\omega_{0}+1\right)+.4 u\left(\omega_{0}-1\right)=u\left(\omega_{0}\right)$ with the smallest reward G. To find such G, I need to find $u \in \mathcal{U}$ such that the utility gain from G is as big as possible, and the utility loss from L is as small as possible. Given the restriction to concave functions, it's clear that the optimal u should be linear on intervals where it is not specified by constraints on u and should match the derivatives at the boundaries of intervals.
2.1 Here, u is only specified at three points $\left(\omega_{0}, u\left(\omega_{0}\right)\right),\left(\omega_{0}+1, u\left(\omega_{0}+1\right)\right),\left(\omega_{0}-\right.$ $1, u\left(\omega_{0}-1\right)$), so we do linear extrapolation on the rest of the domain. Therefore,

$$
\frac{u\left(\omega_{0}+G\right)-u\left(\omega_{0}\right)}{u\left(\omega_{0}\right)-u\left(\omega_{0}-L\right)}=\frac{2 G}{3 L}
$$

and at the same time

$$
\frac{u\left(\omega_{0}+G\right)-u\left(\omega_{0}\right)}{u\left(\omega_{0}\right)-u\left(\omega_{0}-L\right)}=1
$$

so $G=150000$.
2.2 Here, u is specified only on $\left[\omega_{0}-100, \omega_{0}+100\right]$. From $.6 e^{-\alpha\left(\omega_{0}+1\right)}+.4 e^{-\alpha\left(\omega_{0}-1\right)}=$ $e^{-\alpha \omega_{0}}$, find $\alpha=\ln 1.5$ and so, $u^{\prime}\left(\omega_{0}+100\right)=\ln 1.5(1.5)^{-\left(\omega_{0}+100\right)}$ and $u^{\prime}\left(\omega_{0}-\right.$ $100)=\ln 1.5(1.5)^{-\left(\omega_{0}-100\right)}$. By the linearity of u outside $\left[\omega_{0}-100, \omega_{0}+100\right]$,

$$
u\left(\omega_{0}+100+(G-100)\right)=u\left(\omega_{0}+100\right)+u^{\prime}\left(\omega_{0}+100\right)(G-100)
$$

$$
u\left(\omega_{0}-100-(L-100)\right)=u\left(\omega_{0}-100\right)-u^{\prime}\left(\omega_{0}-100\right)(L-100)
$$

Now using the second indifference condition, we get

$$
G=100+\frac{-2+1.5^{100}+1.5^{-100}+\ln 1.5(1.5)^{100}(L-100)}{\ln 1.5(1.5)^{-100}}
$$

2.3 From the previous part $\alpha=\ln 1.5$ and so, $\left(\frac{2}{3}\right)^{G}+\left(\frac{2}{3}\right)^{-L}=2$ which is not possible.
2.4 Let $x=\omega_{0}^{-1}$. By CRRA specification,

$$
.6(1+x)^{1-\rho}+.4(1-x)^{1-\rho}=1=.5(1+G x)^{1-\rho}+.5(1-L x)^{1-\rho} .
$$

By $\omega_{0} \geq L \gg 0$, we have $x \ll 0$ and so, we could take the Taylor expansion of the first equation to get

$$
.6(1-\rho) x+.6(1-\rho) \rho \frac{x^{2}}{2}=.4(1-\rho) x-.4(1-\rho) \rho \frac{x^{2}}{2}+o\left(x^{2}\right)
$$

or $\rho x=.4+o\left(x^{2}\right)$ and so, $\rho \gg 1$. Now $(1-L x)^{1-\rho} \geq \exp (L x(\rho-1)) \approx$ $\exp \left(.4 L \frac{\rho-1}{\rho}\right) \gg 2$ and so, it is impossible to find appropriate G.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

