
Chapter 4 

Stochastic Dominance 

In this lecture, I will introduce notions of stochastic dominance that allow one to de-

termine the preference of an expected utility maximizer between some lotteries with 

minimal knowledge of the decision maker’s utility function. 

As in the previous lecture, take X = R as the set of wealth level and let u be the 

decision maker’s utility function. Assume that u is weakly increasing. The lotteries 

are represented by their cumulative distribution functions. Designate F and G generic 

distribution functions. I will assume throughout that F and G have a bounded support 

[a, b] with F (a) = G (a) = 0 and F (b) = G (b) = 1. 

I will define two notions of stochastic dominance: 

1.	 First-order stochastic dominance: when a lottery F dominates G in the sense of 

first-order stochastic dominance, the decision maker prefers F to G regardless of 

what u is, as long as it is weakly increasing.  

2.	 Second-order stochastic dominance: when a lottery F dominates G in the sense of 

second-order stochastic dominance, the decision maker prefers F to G as long as 

he is risk averse and u is weakly increasing. 

4.1 First-order Stochastic Dominance 

I will provide two equivalent definitions and show that they are indeed equivalent. 
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Definition 4.1 For any lotteries F and G, F first-order stochastically dominates G 

if and only if the decision maker weakly prefers F to G under every weakly increasing � � 
utility function u, i.e., u (x) dF ≥ u (x) dG. 

Definition 4.2 For any lotteries F and G, F first-order stochastically dominates G if 

and only if 

F (x) ≤ G (x) (∀x) . 

The first definition simply states that every individual with increasing utility function 

prefers F to G regardless of his risk preferences. The second definition requires that F 

gives more wealth than G realization by realization. This is not so obvious. Let me 

elaborate. According to the second definition, the first-order stochastic dominance can 

be obtained by transferring probability weights upwards. For an illustration, assume 

that F and G are continuous and strictly increasing on [a, b]. Suppose that lottery x is 

distributed with G. For every realization x, let us give the decision maker instead 

y (x) =  F −1 (G (x)) . 

When F first-order stochastically dominates G (i.e. F (x) ≤ G (x)) we would be giving 

him more than x at every realization: 

y (x) =  F −1 (G (x)) ≥ x. 

Hence, under the new scheme, he would be getting extra wealth F −1 (G (x)) − x ≥ 0 at 

every realization. But the new lottery y is distributed by F : for any ȳ, � � 
Pr (y (x) ≤ ȳ) = Pr  x ≤ y −1 (ȳ) � � 

= G y −1 (ȳ) � � 
= G G−1F (ȳ) 

= F (ȳ) , 

where the first equality is the fact that y is increasing, the second equality is by the 

fact that x is distributed by G, and the third equality is by definition of y (y−1 (ȳ) =  

G−1F (ȳ)). 

As long as the decision maker prefers having more wealth to less (i.e. u is increasing), 

he would prefer to have the latter scheme y (x), which is distributed by F , rather than 
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x, which is distributed by G. Therefore, the above definitions are equivalent. The next 

result states this formally. 

Theorem 4.1 The following are equivalent (definitions of first-order stochastic domi-

nance). � � 
1. For every weakly increasing utility function u, i.e., u (x) dF ≥ u (x) dG. 

2. ∀x : F (x) ≤ G (x) . 

Proof. (1 ⇒ 2) Suppose 2 does not hold. Then, there exists x ∗ such that F (x ∗) > 

G (x ∗). Define u ≡ 1{x>x ∗} by u (x) = 1  if x > x  ∗ and 0 otherwise. Clearly, � � 
u (x) dF = 1  − F (x ∗ ) < 1 − G (x ∗ ) =  u (x) dG. 

(2 ⇒ 1) I will prove this part under the assumption that F and G are continuous 

and strictly increasing on [a, b]. In that case, as we have seen above, � � � 
u (y (x)) dF (y (x)) = u (y (x)) dG (x) ≥ u (x) dG (x) , 

where the equality by y (x) =  F −1 (G (x)) and the inequality is by the fact that u (y (x)) ≥ 

u (x) for every x, which is true because y (x) ≥ x and u is weakly increasing. 

4.2 Second-order Stochastic Dominance 

Now assume that F and G have the same mean, so that one does not dominate the 

other in the sense of first-order stochastic dominance. Can we still say that a risk-averse 

decision maker prefers F to G without knowing his utility function u? Intuitively this 

would be the case as long as F involves less risk than G. I will next formalize this idea, 

and this will lead to the notion of second-order stochastic dominance. 

Definition 4.3 For any lotteries F and G, F second-order stochastically dominates G 

if and only if the decision maker weakly prefers F to G under every weakly increasing 

concave utility function u. 

This definition is directly given in terms of the final goal. I will next give another 

equivalent definition, which formalizes the idea that G is riskier than F . 
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Definition 4.4 For any lotteries F and G, G is a mean-preserving spread of F if and 

only if 

y = x + ε 

for some x ∼ F , y ∼ G and ε such that E (ε|x) = 0 for all x. 

Imagine that for every realization x, we  add  a  noise  ε and give decision maker y = 

x + ε. Since  E (ε|x) = 0, this only makes the consumption riskier without improving its 

expectation. In other words, we are spreading the probabilities without changing the 

mean. If the decision maker is risk averse, he would not like to have this scheme. He 

would rather consume x. Indeed, this will be the case. Before stating this formally, it 

is instructive to compare this scheme to the one in the first-order stochastic dominance. 

In that case, we were giving him an extra amount consumption at every realization x. 

While this could increase the variance of the consumption, the decision maker knew 

that he was getting if anything more. He liked that scheme. Here, we are increasing the 

variance without increasing the expectation. He can gain or loss by the change. Being 

risk  averse, he does not  like the  change.  � � 
Theorem 4.2 Assume that xdF = xdG. The following are equivalent. � � 
1. u (x) dF (x) ≥ u (x) dG (x) for every weakly increasing concave utility function 

u. 

2. G is a mean-preserving spread of F . �� t t3. For every t ≥ 0, 
a G(x)dx ≥ 

a F (x)dx. 

Proof. I first show that 2 implies 1. Under 2, we can write � � 
u (y) dG (y) =  E [u (x + ε) |x] dF (x) � 

≤ u (E [x + ε|x]) dF (x) � 
= u (x) dF (x) , 

obtaining 1. Here, the first equality is by the law of iterated expectations and by the 

assumption that y = x + ε, the inequality is by Jensen’s inequality (as u is concave), 

and the last equality by the assumption that E [ε|x] = 0. 
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To  show  that  1 is equivalent to 3,  define mapping I : R → R by I (t) =  
� 
a

t 
[F (x)− G(x)] dx. 

Clearly, I (a) = 0. Since  F and G have the same mean, it is also true that I (b) = 0 (see 

the textbook). Applying integration by parts twice, one then obtains that � � 
�� (u (x) d (F (x)− G (x)) = u x) I (x) dx. 

�� (Condition 1 is true iff the left hand side is nonnegative  for all  u with u x) ≤ 0 every-

where. By the equality, the latter holds if and only if I (x) ≤ 0 everywhere, i.e., Condition 

3. 
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