Problem 1

Recall that VNM utility functions $u:\{a, b, c\} \times\{L, M, R\} \rightarrow \mathbb{R}$ and $\tilde{u}:\{a, b, c\} \times\{L, M, R\} \rightarrow$ \mathbb{R} represent the same preferences over P if and only if there exist $a \in \mathbb{R}_{+}$and $b \in \mathbb{R}$ such that $\tilde{u}=a u+b$.
(a) Player 1's preferences are not the same. For if they were, considering outcomes (a, L) and (a, M) implies that $12=2 a+b$ and $5=a+b$, which implies that $a=7$ and $b=-2$. But, for outcome $(a, R),-3 \neq-3(7)-2$.

Player 2's preferencs are the same, because $\tilde{u}=\frac{1}{3} u-\frac{1}{3}$ (where \tilde{u} is the VNM utility function on the right).
(b) Player 1's.preferences are the same, because $\tilde{u}=u$.

Player 2's preferences are not the same. For if they were, considering outcomes (a, L) and (a, M) implies that $5=2 a+b$ and $1=0 a+b$, which implies that $a=2$ and $b=1$. But, for outcome $(b, M), 4 \neq 2(2)+1$.

Problem 2

(a) Since $P=\Delta(C)=\left\{\left(p_{x}, p_{y}, p_{x}\right): p_{x}, p_{y}, p_{x} \geq 0, p_{x}+p_{y}+p_{z}=1\right\}$, it follows that $I_{1}=$ $I_{2}=(1,0,0)$. Thus, the VNM utility function $u: C \rightarrow \mathbb{R}$ given by $u_{x}=1, u_{y}=0$, and $u_{z}=0$ represents a preference relation with indifference sets I_{1} and I_{2}.
(b) The VNM utility function $u: C \rightarrow \mathbb{R}$ given by $u_{x}=1, u_{y}=-2$, and $u_{z}=0$ represents a preferences relation with indifference sets I_{1} and I_{2}.
(c) Continuity is violated: Suppose that every lottery in I_{2} is strictly prefered to every lottery in I_{1} (the opposite case in analogous). Let $p=(1,0,0)$ and let $q_{n}=\left(\frac{1}{2}+\frac{1}{n}, \frac{1}{2}-\frac{1}{n}, 0\right)$. Then $q_{n} \succsim p$ for all $n \in \mathbb{N}$, but $p \succ q$ for $q=\left(\frac{1}{2}, \frac{1}{2}, 0\right)=\lim _{n \rightarrow \infty} q_{n}$. Independence is also violated.
(d) Independence is violated: $(0,0,1)$ and $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$ are in I_{2}, so $(0,0,1) \sim\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$. Independence implies that $\frac{1}{2}(0,0,1)+\frac{1}{2}\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \sim(0,0,1)$, or equivalently that $\frac{1}{2}(0,0,1)+$
$\frac{1}{2}\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \in I_{2}$. But $\frac{1}{2}(0,0,1)+\frac{1}{2}\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)=\left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right)$, and $\frac{1}{8} \neq\left(\frac{1}{4}\right)^{2}$, so $\frac{1}{2}(0,0,1)+$ $\frac{1}{2}\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \notin I_{2}$.

Problem 3

Let $C=\{x, y, z\}$ and consider the lexicographic preference relation \succsim given by $p \succsim q$ if and only if either $p_{x}>q_{x}$ or $\left[p_{x}=q_{x}\right.$ and $\left.p_{y} \geq q_{y}\right]$. I check that this is indeed a preference relation (i.e., satisfies Completeness and Transitivity) and that it satisfies Independence but violates Continuity.

Completeness: For all $p, q \in P$, either $p_{x}>q_{x}, q_{x}>p_{x}$, or $\left[p_{x}=q_{x}\right.$ and either $p_{y} \geq q_{y}$ or $\left.q_{y} \geq p_{y}\right]$. Hence, $p \succsim q$ or $q \succsim p$.

Transitivity: If $p \succsim q \succsim r$ for $p, q, r \in P$, then $p_{x} \geq q_{x}$ and $q_{x} \geq r_{x}$, with $p_{x}=q_{x}=r_{x}$ only if $p_{y} \geq q_{y}$ and $q_{y} \geq r_{y}$. Therefore, either $p_{x}>r_{x}$ or $\left[p_{x}=r_{x}\right.$ and $\left.p_{y} \geq r_{y}\right]$. Hence, $p \succsim r$.

Independence: For all $p, q, r \in P$ and $\alpha \in(0,1]$,

$$
\begin{aligned}
\alpha p+(1-\alpha) r & \succsim \alpha q+(1-\alpha) r \\
& \Longleftrightarrow \\
\alpha p_{x}+(1-\alpha) r_{x} & >\alpha q_{x}+(1-\alpha) r_{x} \text { or } \\
{\left[\alpha p_{x}+(1-\alpha) r_{x}\right.} & \left.=\alpha q_{x}+(1-\alpha) r_{x} \text { and } \alpha p_{y}+(1-\alpha) r_{y} \geq \alpha q_{y}+(1-\alpha) r_{y}\right] \\
& \Longleftrightarrow \\
p_{x} & >q_{x} \text { or }\left[p_{x}=q_{x} \text { and } p_{y} \geq q_{y}\right] \\
& \Longleftrightarrow \\
p & \succsim q .
\end{aligned}
$$

Violation of Continuity: Let $p=\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ and let $q_{n}=\left(\frac{1}{2}-\frac{1}{n}, \frac{1}{2}+\frac{1}{n}, 0\right)$. Then $p \succsim q_{n}$ for all $n \in \mathbb{N}$, but $q \succ p$ for $q=\left(\frac{1}{2}, \frac{1}{2}, 0\right)=\lim _{n \rightarrow \infty} q_{n}$.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

