Problem 1

Recall that VNM utility functions $u : \{a, b, c\} \times \{L, M, R\} \to \mathbb{R}$ and $\tilde{u} : \{a, b, c\} \times \{L, M, R\} \to \mathbb{R}$ represent the same preferences over P if and only if there exist $a \in \mathbb{R}_+$ and $b \in \mathbb{R}$ such that $\tilde{u} = au + b$.

(a) Player 1's preferences are not the same. For if they were, considering outcomes (a, L) and (a, M) implies that 12 = 2a + b and 5 = a + b, which implies that a = 7 and b = -2. But, for outcome $(a, R), -3 \neq -3(7) - 2$.

Player 2's preferences are the same, because $\tilde{u} = \frac{1}{3}u - \frac{1}{3}$ (where \tilde{u} is the VNM utility function on the right).

(b) Player 1's.preferences are the same, because $\tilde{u} = u$.

Player 2's preferences are not the same. For if they were, considering outcomes (a, L)and (a, M) implies that 5 = 2a + b and 1 = 0a + b, which implies that a = 2 and b = 1. But, for outcome (b, M), $4 \neq 2(2) + 1$.

Problem 2

(a) Since $P = \Delta(C) = \{(p_x, p_y, p_x) : p_x, p_y, p_x \ge 0, p_x + p_y + p_z = 1\}$, it follows that $I_1 = I_2 = (1, 0, 0)$. Thus, the VNM utility function $u : C \to \mathbb{R}$ given by $u_x = 1, u_y = 0$, and $u_z = 0$ represents a preference relation with indifference sets I_1 and I_2 .

(b) The VNM utility function $u : C \to \mathbb{R}$ given by $u_x = 1$, $u_y = -2$, and $u_z = 0$ represents a preferences relation with indifference sets I_1 and I_2 .

(c) Continuity is violated: Suppose that every lottery in I_2 is strictly prefered to every lottery in I_1 (the opposite case in analogous). Let p = (1, 0, 0) and let $q_n = (\frac{1}{2} + \frac{1}{n}, \frac{1}{2} - \frac{1}{n}, 0)$. Then $q_n \succeq p$ for all $n \in \mathbb{N}$, but $p \succ q$ for $q = (\frac{1}{2}, \frac{1}{2}, 0) = \lim_{n \to \infty} q_n$. Independence is also violated.

(d) Independence is violated: (0,0,1) and $(\frac{1}{2},\frac{1}{4},\frac{1}{4})$ are in I_2 , so $(0,0,1) \sim (\frac{1}{2},\frac{1}{4},\frac{1}{4})$. Independence implies that $\frac{1}{2}(0,0,1) + \frac{1}{2}(\frac{1}{2},\frac{1}{4},\frac{1}{4}) \sim (0,0,1)$, or equivalently that $\frac{1}{2}(0,0,1) + \frac{1}{2}(\frac{1}{2},\frac{1}{4},\frac{1}{4}) \sim (0,0,1)$. $\frac{1}{2} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \in I_2. \quad \text{But } \frac{1}{2} \left(0, 0, 1\right) + \frac{1}{2} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) = \left(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\right), \text{ and } \frac{1}{8} \neq \left(\frac{1}{4}\right)^2, \text{ so } \frac{1}{2} \left(0, 0, 1\right) + \frac{1}{2} \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right) \notin I_2.$

Problem 3

Let $C = \{x, y, z\}$ and consider the lexicographic preference relation \succeq given by $p \succeq q$ if and only if either $p_x > q_x$ or $[p_x = q_x$ and $p_y \ge q_y]$. I check that this is indeed a preference relation (i.e., satisfies Completeness and Transitivity) and that it satisfies Independence but violates Continuity.

Completeness: For all $p, q \in P$, either $p_x > q_x$, $q_x > p_x$, or $[p_x = q_x$ and either $p_y \ge q_y$ or $q_y \ge p_y]$. Hence, $p \succeq q$ or $q \succeq p$.

Transitivity: If $p \succeq q \succeq r$ for $p, q, r \in P$, then $p_x \ge q_x$ and $q_x \ge r_x$, with $p_x = q_x = r_x$ only if $p_y \ge q_y$ and $q_y \ge r_y$. Therefore, either $p_x > r_x$ or $[p_x = r_x \text{ and } p_y \ge r_y]$. Hence, $p \succeq r$.

Independence: For all $p, q, r \in P$ and $\alpha \in (0, 1]$,

$$\begin{array}{rcl} \alpha p + (1 - \alpha) \, r & \succsim & \alpha q + (1 - \alpha) \, r \\ & \longleftrightarrow & \\ \alpha p_x + (1 - \alpha) \, r_x & > & \alpha q_x + (1 - \alpha) \, r_x \text{ or} \\ f \alpha p_x + (1 - \alpha) \, r_x & = & \alpha q_x + (1 - \alpha) \, r_x \text{ and } \alpha p_y + (1 - \alpha) \, r_y \ge \alpha q_y + (1 - \alpha) \, r_y \\ & \longleftrightarrow & \\ p_x & > & q_x \text{ or } \left[p_x = q_x \text{ and } p_y \ge q_y \right] \\ & \longleftrightarrow & \\ p & \succsim & q_z \end{array}$$

Violation of Continuity: Let $p = \left(\frac{1}{2}, 0, \frac{1}{2}\right)$ and let $q_n = \left(\frac{1}{2} - \frac{1}{n}, \frac{1}{2} + \frac{1}{n}, 0\right)$. Then $p \succeq q_n$ for all $n \in \mathbb{N}$, but $q \succ p$ for $q = \left(\frac{1}{2}, \frac{1}{2}, 0\right) = \lim_{n \to \infty} q_n$.

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.