14.123 Microeconomic Theory III. 2014

Problem Set 3. Solution.

Anton Tsoy

1. I work with certainty equivalent as in the lecture.
1.1 Certainty equivalent of the individual's continuation utility is $\left(\mu-\frac{1}{2} \alpha \sigma^{2}\right)(T-$ $t+1)+X_{i 1}+\cdots+X_{i(t-1)}$, and the individual is willing to sell the asset for price $P_{i t}=\left(\mu-\frac{1}{2} \alpha \sigma^{2}\right)(T-t+1)+X_{i 1}+\cdots+X_{i(t-1)}$. Expected value of the asset to the company is $\mu(T-t+1)+X_{i 1}+\cdots+X_{i(t-1)}>P_{i t}$ and so, the company should make such offer.
1.2 The company buys all assets at date 1 paying $\Pi_{1}=\left(\mu-\frac{1}{2} \alpha \sigma^{2}\right) T n$ and the return is $\sum_{i} Y_{i}$. Certainty equivalent of the dividend of the new individual equals $\mu T-\frac{T}{2 n} \alpha \sigma^{2}-\frac{\Pi_{1}}{n}=\frac{1}{2} \alpha \sigma^{2} T\left(1-\frac{1}{n}\right)$, which is the maximal price that a new individual is willing to pay for a $1 / n$ share.
1.3 Suppose that company could buy the assets only starting from date $t=2$. Then it pays for the assets price $\Pi_{2}=\left(\mu-\frac{1}{2} \alpha \sigma^{2}\right)(T-1) n+\sum_{i} X_{i 1}$. Certainty equivalent of the dividend equals $\frac{1}{2} \alpha \sigma^{2}(T-1)\left(1-\frac{1}{n}\right)$.
1.4 A new individual is willing to pay less for the share of the company with restricted trades, since he expects that the assets will be purchased by the company at $t=2$ at a higher price.
2. I start by setting up the general problem. The Bellman equation for the problem is

$$
V(\omega)=\max _{s \in[0, \omega]} u(\omega-s)+\delta(1-\rho) \mathbb{E}[V(s r)] .
$$

The first-order condition for this problem together with the envelope condition $V^{\prime}(\omega)=u^{\prime}(\omega-s)$ gives

$$
\begin{equation*}
u^{\prime}(\omega-s)=\delta(1-p) \mathbb{E}\left[r u^{\prime}\left(r s-s_{+}\right)\right], \tag{1}
\end{equation*}
$$

where s_{+}is the savings in the next round.
2.1 In (1), set $r=1,\left(c_{0}^{*}\right)^{-\rho}=\delta(1-p)\left(\omega-c_{0}^{*}\right)^{-\rho}$ or $c_{0}^{*}=\frac{1}{1+\delta^{1 / \rho}(1-p)^{1 / \rho}} \omega$ and $c_{1}^{*}=\frac{\delta^{1 / \rho}(1-p)^{1 / \rho}}{1+\delta^{1 / \rho}(1-p)^{1 / \rho}} \omega$.
2.2 In (1), set $r=1,\left(c_{t}^{*}\right)^{-\rho}=\delta(1-p)\left(c_{t+1}^{*}\right)^{-\rho}$ or $c_{t+1}^{*}=c_{t}^{*} \delta^{1 / \rho}(1-p)^{1 / \rho}=$ $c_{0}^{*} \delta^{(t+1) / \rho}(1-p)^{(t+1) / \rho}$. Therefore, $c_{0}^{*}=\left(1-\delta^{1 / \rho}(1-p)^{1 / \rho}\right) \omega$.
2.3 For $\rho=1, c_{t+1}^{*}=c_{0}^{*} \delta^{t+1}(1-p)^{t+1}$ and $c_{0}^{*}=(1-\delta(1-p)) \omega$.
2.4 We guess that solution takes form $c=\alpha \omega$ and plug it into (1) to get

$$
\frac{1}{\alpha c}=\delta(1-p) \mathbb{E}\left[\frac{r}{\alpha r \omega(1-\alpha)}\right]
$$

and so, $c_{t}^{*}=(1-\delta(1-p)) \omega_{t}$ where $\omega_{t}=r_{t}\left(\omega_{t-1}-c_{t-1}\right)$ and $\omega_{0}=\omega$.
3. I denote by \succeq first-order stochastic dominance relationship, and by \geq second-order stochastic dominance relationship.
3.1 True. $P(g(X) \leq t)=P\left(X \leq g^{-1}(t)\right) \leq P\left(Y \leq g^{-1}(t)\right)=P(g(Y) \leq t)$.
3.2 False. Consider $X=\frac{1}{2}$ and Y is uniform on $[0,1]$. Then $X \geq Y$. Consider $g(t)=t^{2}$ and $u(t)=t$, then $\mathbb{E} u(g(Y))=\mathbb{E} g(Y)>g(\mathbb{E} Y)=g(X)=\mathbb{E} u(g(X))$.
3.3 False. Consider the following counter-example. Let $\alpha=\frac{1}{2}, X$ is uniform on $[0,1]$ and $Y=1-X$. Since X and Y have the same distribution, $X \succeq Y$. However, $\frac{X+Y}{2}=\frac{1}{2}$ and X are not ordered according to \succeq.
4. Denote the share invested in asset $i=1,2$ by z_{i}. Optimal portfolio solves the problem

$$
\left.\left.\max _{z_{1}, z_{2}} \mathbb{E}-e^{-\alpha\left(\omega+z_{1}(X-1)+z_{2}(Y-1)\right)}=\max _{z_{1}, z_{2}} \omega+z_{1}(\mu-1)-\frac{z_{1}^{2}}{2} \alpha \sigma^{2}\right)+z_{2}(2 \mu-1)-\frac{z_{2}^{2}}{2} \alpha \sigma^{2}\right)
$$

which has solution $z_{1}=\frac{1}{\alpha} \frac{\mu-1}{\sigma^{2}}$ and $z_{2}=\frac{1}{\alpha} \frac{2 \mu-1}{\sigma^{2}}$.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

