14.123 Microeconomics III—Problem Set 1

Muhamet Yildiz

Instructions. You are encouraged to work in groups, but everybody must write their own solution to the problem that is for grade. Good Luck!

- (i) (For Grade) There are *n* individuals. Each individual *i* has constant absolute risk aversion $\alpha_i > 0$ and an asset that pays X_i where $(X_1, \ldots, X_n) \sim N((\mu_1, \ldots, \mu_n), \Sigma)$.
 - (a) What are the optimal risk sharing contracts? What is the vector of payoffs from an optimal risk-sharing contract? Characterize the set of the vectors of certainty equivalents from optimal risk sharing contracts.
 - (b) Answer (a) for $\alpha_1 = \cdots = \alpha_n$, $\mu_1 = \cdots = \mu_n$ and

$$\Sigma = \sigma^{2} \begin{pmatrix} 1 & \rho & \dots & \rho & \rho \\ \rho & 1 & \dots & \rho & \rho \\ \dots & \dots & \dots & \dots & \dots \\ \rho & \rho & \dots & 1 & \rho \\ \rho & \rho & \dots & \rho & 1 \end{pmatrix}$$

How much the society as a whole are willing to pay all of these assets? Assuming that they write a symmetric contract, what is the preference relation of an individual on (σ^2, ρ) pairs? Briefly discuss.

- (ii) Exercise 2.1 in lecture notes.
- (iii) Consider the set of lotteries (p_x, p_y, p_z) on the set of outcomes $\{x, y, z\}$ where p_x, p_y , and p_z are the probabilities of x, y, and z, respectively.
 - (a) For each (partial) preference below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if no, show that it cannot come from an expected utility maximizer.)
 - i. (0,1,0) > (1/8, 6/8, 1/8) and (7/8, 0, 1/8) > (6/8, 1/8, 1/8)
 - ii. (1/4, 1/4, 1/2) > (3/4, 0, 1/4) > (5/6, 1/6, 0) > (1/2, 1/3, 1/6)
 - (b) For each family of indifference curves below, determine whether it is consistent with expected utility maximization. (If yes, find a utility function; if no, show that it cannot come from an expected utility maximizer.)

i. $p_y = c - 2p_x$ (where c varies)

ii. $p_y = c (p_x + 1)$ (where c varies)

iii. $p_y = c - 2\sqrt{p_x}$ (where c varies)

- (c) Find a complete and transitive preference relation on the above lotteries that satisfies the independence axiom but cannot have an expected utility representation.
- (iv) Alice has M dollars and has a constant absolute risk aversion α (i.e. $u(x) = -e^{-\alpha x}$) for some $\alpha > 0$. With some probability $\pi \in (0, 1)$ she may get sick, in which case she would need to spend L dollars on her health. There is a health-insurance policy that fully covers her health care expenses in case of sickness and costs P to her. (If she buys the policy, she needs to pay P regardless of whether she gets sick.)
 - (a) Find the set of prices P that she is willing to pay for the policy. How does the maximum price \bar{P} she is willing to pay varies with the parameters M, L, α , and π ?
 - (b) Suppose now that there is a test $t \in \{-1, +1\}$ that she can take before she makes her decision on buying the insurance policy. If she takes the test and the test t is positive, her posterior probability of getting sick jumps to $\pi^+ > \pi$ and if the test is negative, then her posterior probability of getting sick becomes 0. What is the maximum price c she is willing to pay in order to take the test? (Take $P \leq \overline{P}$.)

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.