14.123 Microeconomic Theory III Problem Set 3

- 1. Lecture Notes; Chapter 6.4, Exercise 8.
- 2. Alice and Bob seek each other. Simultaneously, Alice puts effort s_A and Bob puts effort s_B to search. The probability of meeting is $s_A s_B$; the value of the meeting is $v_A \ge 0$ for Alice and $v_B \ge 0$ for Bob, and the search costs s_A^3 to Alice and s_B^3 to Bob.
 - (a) Compute the set of all rationalizable strategies.
 - (b) How do the rationalizable search efforts change with v_A and v_B ?
- 3. Consider a game with a finite set $N = \{1, \ldots, n\}$ of players and a finite set $S = S_1 \times \cdots \times S_n$ of strategy profiles. A general information structure is a list $(\Omega, I_1, \ldots, I_n, p_1, \ldots, p_n)$ where I_i is the information partition of i and $p_i \in \Delta(\Omega)$ is the prior belief of i for every $i \in N$. For every rationalizable strategy $s_i^* \in S_i^\infty$ of every player i, show that there exist a general information structure $(\Omega, I_1, \ldots, I_n, p_1, \ldots, p_n)$ and an adapted strategy profile $(\mathbf{s}_1, \ldots, \mathbf{s}_n)$ such that
 - $\mathbf{s}_i(\omega^*) = s_i^*$ for some $\omega^* \in \Omega$ and
 - $\mathbf{s}_{j}(\omega) \in \arg \max_{s_{i} \in S_{i}} E_{p_{i}}[u_{j}(s_{j}, \mathbf{s}_{-j}) | I_{j}(\omega)]$ for every $\omega \in \Omega$ and $j \in N$.

[Hint: For every $i \in N$ and every $s_i \in S_i^{\infty}$, s_i is best reply a belief $\mu_i^{s_i}$ on S_{-i}^{∞} . Take $\Omega = S^{\infty}$.]

4. Characterize the set of all correlated equilibrium distributions for the following game:

$$\begin{array}{c|ccccc}
L & R \\
U & 3,1 & 0,0 \\
D & 0,0 & 1,3
\end{array}$$

MIT OpenCourseWare http://ocw.mit.edu

14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.