Problem Set 4 - Solutions

Question 1

The state space is $S=[-1,1]$, with uniform probability. Indexed by $a \in[-1,1]$, there are assets $D_{a}: S \rightarrow \mathbb{R}$ such that $D_{a}(s)=1+a s$ for all $s \in S$. Denote by $F_{a}: \mathbb{R} \rightarrow[0,1]$ the cdf of the lottery over \mathbb{R} induced by D_{a}. The DM is a rank-dependent expected utility maximizer with preference relation \gtrsim over the assets. Her probability weighting function, parametrized by $\alpha \in(-1, \infty)$, is $w:[0, \infty) \rightarrow[0, \infty)$ such that $w(p)=p^{1+\alpha}$. We wish to characterize \gtrsim. We will do it by computing for all $a \in[-1.1]$

$$
U\left(D_{a}\right)=\int_{\mathbb{R}} x d w\left(F_{a}(x)\right)
$$

First we obtain an expression for F_{a}. Observe that for all $x \in \mathbb{R}$

$$
F_{a}(x)=\operatorname{Pr}\left(D_{a} \leqslant x\right)=\frac{1}{2} \int_{-1}^{1} \mathbb{1}(1+a s \leqslant x) d s .
$$

Now case by case: if $a<0$, then

$$
F_{a}(x)=\frac{1}{2} \int_{-1}^{1} \mathbb{1}\left(s \geqslant \frac{x-1}{a}\right) d s= \begin{cases}0 & \text { if } x \leqslant a+1, \\ \frac{a+1-x}{2 a} & \text { if } x \in(1+a, 1-a] \\ 1 & \text { else. }\end{cases}
$$

If $a=0$, then

$$
F_{a}(x)=\frac{1}{2} \int_{-1}^{1} \mathbb{1}(1+a s \leqslant x) d s=\int_{-1}^{1} \mathbb{1}(1 \leqslant x) d s= \begin{cases}0 & \text { if } x<1, \\ 1 & \text { else } .\end{cases}
$$

If $a>0$, then

$$
F_{a}(x)=\frac{1}{2} \int_{-1}^{1} \mathbb{1}(1+a s \leqslant x) d s=\int_{-1}^{1} \mathbb{1}\left(s \leqslant \frac{x-1}{a}\right) d s= \begin{cases}0 & \text { if } x \leqslant 1-a \\ \frac{x-1+a}{2 a} & \text { if } x \in(1-a, 1+a] \\ 1 & \text { else }\end{cases}
$$

Now we compute $U\left(D_{a}\right)$. To ease notation, write $\varphi_{a}=w \circ F_{a}$. If $a<0$, then

$$
\begin{aligned}
\int_{\mathbb{R}} x d \varphi_{a}(x) & =\int_{1+a}^{1-a} x d \varphi_{a}(x) \\
& =(1-a) \varphi_{a}(1-a)-(1+a) \varphi_{a}(1+a)-\int_{1+a}^{1-a} \varphi_{a}(x) d x \\
& =(1-a)-\int_{1+a}^{1-a} \varphi_{a}(x) d x
\end{aligned}
$$

where the first equality holds because φ_{a} is constant before $1+a$ and after $1-a$, the second inequality follows from integration by parts, and the third equality because $\varphi_{a}(1-a)=1$ and $\varphi_{a}(1+a)=0$. Finally

$$
\int_{1+a}^{1-a} \varphi_{a}(x) d x=\int_{1+a}^{1-a}\left(\frac{a+1-x}{2 a}\right)^{1+\alpha} d x=\left[-\frac{2 a}{2+\alpha}\left(\frac{a+1-x}{2 a}\right)^{2+\alpha}\right]_{1+a}^{1-a}=-\frac{2 a}{2+\alpha} .
$$

In conlusion

$$
U\left(D_{a}\right)=(1-a)+\frac{2 a}{2+\alpha}
$$

Moving to the other cases, Clearly $U\left(D_{0}\right)=1$. The last case $a>0$ can be treated as the case $a<0$ to obtain

$$
U\left(D_{a}\right)=(1+a)-\frac{2 a}{2+\alpha}
$$

Summing up: for all $a \in[-1,1]$

$$
U\left(D_{a}\right)=(1+|a|)-\frac{2|a|}{2+\alpha},
$$

where $|a|$ is the absolute value of a. Going back to the preference relation, we obtain that for all $a, a^{\prime} \in[-1,1]$

$$
D_{a} \gtrsim D_{a^{\prime}} \quad \Leftrightarrow \quad \operatorname{sgn}(\alpha)|a||\geqslant \operatorname{sgn}(\alpha)| a^{\prime} \mid
$$

where sgn is the signum function (i.e., $\operatorname{sgn}(\alpha)=-1$ if $\alpha<0, \operatorname{sgn}(0)=0$, and $\operatorname{sgn}(\alpha)=1$ else). Comment: The absolute value $|\alpha|$ parametrizes the variance of the lottery, while $\operatorname{sgn}(\alpha)$ indicates whether the DM is "optimistic" $(\alpha>0)$, "pessimistic" $(\alpha<0)$ or risk-neutral $(\alpha=0)$. If the DM
is optimistic, she prefers lotteries with bigger variance; if she is pessimistic, the converse is true.

Question 2

If F is (the cdf of) a lottery over \mathbb{R} and x_{0} is initial wealth, then

$$
U\left(F \mid x_{0}\right)=\int_{x \geqslant x_{0}} x-x_{0} d F(x)+\lambda \int_{x<x_{0}} x-x_{0} d F(x) .
$$

Moreover the lottery $\frac{3}{5}\left(x_{0}+1\right)+\frac{2}{5}\left(x_{0}-1\right)$ is indifferent to the lottery x_{0} :

$$
\frac{3}{5}(1)+\lambda \frac{2}{5}(-1)=0 \quad \Rightarrow \quad \lambda=\frac{3}{2}
$$

As a result the DM we are considering are different only in terms of initial wealth (i.e., reference point). There we wish to find the pair $\left(x_{0}, G\right) \in \mathbb{R}$ which minimizes G subject to

$$
U\left(\left.\frac{1}{2}\left(x_{0}+G\right)+\frac{1}{2}\left(x_{0}-L\right) \right\rvert\, x_{0}\right) \geqslant U\left(x_{0} \mid x_{0}\right)=0 .
$$

By monotonicity the constraint is satisfied only if $G \geqslant 0$. Therefore we can rewrite the constraint as

$$
\frac{1}{2} G+\frac{3}{4}(-L) \geqslant 0 \quad \Rightarrow \quad G=\frac{3}{2} L,
$$

and the implication gives the optimal choice of G, while x_{0} is undetermined.

Question 3

Part (a) $+(\mathbf{c})$
The indifference condition is

$$
\frac{1}{2} u(W+x)+\frac{1}{2} u(W-x)=u(W-P(x, W)) .
$$

Using $u(z)=\sqrt{z}$ and rearranging, we get

$$
P(x, W)=W-\frac{1}{4}(\sqrt{W+x}+\sqrt{W-x})^{2} .
$$

The profit margin is

$$
\frac{P(x, W)}{x}=\frac{W}{x}-\frac{1}{4}\left(\sqrt{\frac{W}{x}+1}+\sqrt{\frac{W}{x}-1}\right)^{2} .
$$

We maximize wrt $t=\frac{W}{x}$. Note first that t is at least $\bar{W} / \bar{x} \geqslant 1$, while its range is unbounded from above. Differentiating

$$
\frac{\partial}{\partial t}\left\{t-\frac{1}{4}(\sqrt{t+1}+\sqrt{t-1})^{2}\right\}=\frac{1-t}{2 \sqrt{t^{2}-1}}<0
$$

for $t>\bar{W} / \bar{x}$. Hence the profit margin is maximized at $W=\bar{W}$ and $x=\bar{x}$. Comment: Ann's coefficient of absolute risk aversion is $1 / 2 z$, which is decreasing. Hence the profit margin must be maximized for the lowest value of initial wealth W. On the other hand increasing x raise the variance of the risk, and therefore Ann is willing to pay more to get rid of it.

Part (b) $+(\mathbf{c})$

First we compute Ann's value of the lottery $\frac{1}{2}(W+x)+\frac{1}{2}(W-x)$ with $\operatorname{cdf} F(z)$. Her probability weighting function is $w(p)=p$ for all $p \in[0, \infty)$: thre is no distortion, and therefore $G(z \mid W)=F(z)$. Her reference-dependent utility function

$$
u(z \mid W)=v(z-W)= \begin{cases}\sqrt{z-W} & \text { if } z \geqslant W \\ -2 \sqrt{W-z} & \text { else }\end{cases}
$$

Hence the value of the lottery $\frac{1}{2}(W+x)+\frac{1}{2}(W-x)$ is

$$
\frac{1}{2} \sqrt{x}+\frac{1}{2}(-2 \sqrt{x})=-\frac{1}{2} \sqrt{x}
$$

The indifference condition therefore is

$$
-\frac{1}{2} \sqrt{x}=-2 \sqrt{P(x, W)} \quad \Rightarrow \quad P(x, W)=\frac{x}{16} .
$$

In this case profit margin $P(x, W) / x$ is independent of x and W. Comment: initial wealth does not matter, since it is reference point. Moreover, raising x does not help, since Ann is risk-averse towards gain but risk-seeking towards losses, and therefore the two effects on the profit margin cancel out.

Question 4

Part (a)

Denote Ann's demand by $d(p)$. Given p, Ann chooses $d \in \mathbb{R}$ to maximize

$$
\begin{aligned}
U(d) & :=\min _{\mu \in[\mu, \bar{\mu}]} E[u((y-p) d \mid \mu]= \\
& =-\max _{\mu \in[\mu, \bar{\mu}]} \exp \left(-\alpha\left((\mu-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2}\right)\right. \\
& =- \begin{cases}\exp \left(-\alpha\left((\mu-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2}\right)\right. & \text { if } d \geqslant 0, \\
\exp \left(-\alpha\left((\bar{\mu}-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2}\right)\right. & \text { else. }\end{cases}
\end{aligned}
$$

Therefore $d \in \mathbb{R}$ is chosen to maximize

$$
V(d):= \begin{cases}(\underline{\mu}-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2} & \text { if } d \geqslant 0 \\ (\bar{\mu}-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2} & \text { else }\end{cases}
$$

We solve the optimization case-by-case. If $p \geqslant \bar{\mu}$, any $d>0$ gives $V(d)<0$, and therefore is dominated by $V(0)=0$. So looking for a solution in $d \in(-\infty, 0]$, we take the first order condition and get

$$
d(p)=\frac{\bar{\mu}-p}{\alpha \sigma^{2}} \in(-\infty, 0] .
$$

Now assume that $p \in(\underline{\mu}, \bar{\mu})$. Now $V(d)<0$ for all $d \neq 0$, and therefore $d(p)=0$. If $p \leqslant \underline{\mu}$, any $d<0$ gives $V(d)<0$, and therefore is dominated by $V(0)=0$. So looking for a solution in $d \in[0, \infty)$, we take the first order condition and get

$$
d(p)=\frac{\underline{\mu}-p}{\alpha \sigma^{2}} \in[0, \infty) .
$$

Summing up:

$$
d(p)= \begin{cases}\frac{\mu-p}{\alpha \sigma^{2}} & \text { if } p \leqslant \underline{\mu} \\ 0 & \text { if } p \in(\underline{\mu}, \bar{\mu}) \\ \frac{\bar{\mu}-p}{\alpha \sigma^{2}} & \text { else }\end{cases}
$$

Part (b) $+(c)$

If $Y=0$, the market clearing price any $p \in[\underline{\mu}, \bar{\mu}]$. If $Y>0$, the market clearing prince is

$$
p=\underline{\mu}-\frac{\alpha \sigma^{2} Y}{n} \leqslant \underline{\mu} .
$$

Finally, if $Y<0$, the market clearing prince is

$$
p=\bar{\mu}-\frac{\alpha \sigma^{2} Y}{n} \geqslant \bar{\mu}
$$

Comment: with maxmin agents, only extreme beliefs matter. To make the agents willing to buy, the price has to be below the worst case scenario μ. On the other hand, to make the agents willing to sell, the price has to be above the best case scenario $\bar{\mu}$. Prices are therefore more extreme in this case (wrt expected utility).

Part (c)

Fix $\mu \in[\underline{\mu}, \bar{\mu}]$. Given p, Ann chooses $d \in \mathbb{R}$ to maximize the certainty equivalent

$$
(\mu-p) d-\frac{1}{2} \alpha d^{2} \sigma^{2}
$$

Therefore $d(p)=\frac{\mu-p}{\alpha \sigma^{2}}$. The market clearing price is

$$
p=\mu-\frac{\alpha \sigma^{2} Y}{n} .
$$

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

