Decision Making Under Risk

14.123 Microeconomic Theory III Muhamet Yildiz

Road map

I. Expected Utility Maximization

1. Representation
2. Characterization
3. Indifference Sets under Expected Utility Maximization

Choice Theory - Summary

1. $X=$ set of alternatives
2. Ordinal Representation: $U: X \rightarrow \mathrm{R}$ is an ordinal representation of \succcurlyeq iff:

$$
x \geqslant y \Leftrightarrow U(x) \geq U(y) \forall x, y \in X .
$$

3. If \succcurlyeq has an ordinal representation, then \succcurlyeq is complete and transitive.
4. Assume X is a compact, convex subset of a separable metric space. A preference relation has a continuous ordinal representation if and only if it is continuous.
5. Let \geqslant be continuous and $x^{\prime}>x>x^{\prime \prime}$. For any continuous $\varphi:[0, \mathrm{I}] \rightarrow X$ with $\varphi(I)=x^{\prime}$ and $\varphi(0)=x^{\prime \prime}$, there exists t such that $\phi(t) \sim x$.

-

Model

- $D M=$ Decision Maker
- DM cares only about consequences
- C = Finite set of consequences
- Risk = DM has to choose from alternatives
b whose consequences are unknown
- But the probability of each consequence is known
- Lottery: a probability distribution on C
- $P=$ set of all lotteries p, q, r
- $X=P$
- Compounding lotteries are reduced to simple lotteries!

Expected Utility Maximization

Von Neumann-Morgenstern representation


```
A lottery
    (in P)
```

$$
p \succeq q \Leftrightarrow \underbrace{\sum_{c \in C} u(c) p(c)}_{U(p)} \geq \underbrace{\sum_{c \in C} u(c) q(c)}_{U(q)}
$$

- $U: P \rightarrow R$ is an ordinal representation of \succcurlyeq.
- $U(p)$ is the expected value of u under p.
v U is linear and hence continuous.

Expected Utility Maximization
Characterization (VNM Axioms)
Axiom AI: \succcurlyeq is complete and transitive.
Axiom A2 (Continuity): \succcurlyeq is continuous.

Independence Axiom

Axiom A3: For any $p, q, r \in P, a \in(0, I]$, $a p+(\mathrm{I}-a) r \geqslant a q+(\mathrm{I}-a) r \Leftrightarrow p \geqslant q$.

$>$

Expected Utility Maximization
Characterization Theorem

- \geqslant has a von Neumann - Morgenstern representation iff \geqslant satisfies Axioms AI-A3;
- i.e. \geqslant is a continuous preference relation with Independence Axiom.
- u and v represent \geqslant iff $v=a u+b$ for some $a>0$ and any b.

Exercise

- Consider a relation \geqslant among positive real numbers represented by VNM utility function u with $u(x)=x^{2}$.
- Can this relation be represented by VNM utility function $u^{*}(x)=x^{1 / 2}$?
- What about $u^{* *}(x)=I / x$?

Implications of Independence Axiom (Exercise)

- For any p, q, r, r' with $r \sim r^{\prime}$ and any a in $(0, I]$,

$$
a p+(1-a) r \geqslant a q+(I-a) r^{\prime} \Leftrightarrow p \geqslant q .
$$

- Betweenness: For any p, q, r and any a,

$$
p \sim q \Rightarrow a p+(\mathrm{I}-a) r \sim a q+(\mathrm{I}-a) r .
$$

- Monotonicity: If $p>q$ and $a>b$, then

$$
a p+(1-a) q>b p+(1-b) q .
$$

- Extreme Consequences: $\exists c^{B}, c^{W} \in C: \forall p \in P$,

$$
c^{B} \succcurlyeq p \succcurlyeq c^{W} .
$$

Proof of Characterization Theorem

- $c^{B} \sim c^{W}$ trivial. Assume $c^{B}>c^{W}$.
- Define $\phi:[0,1] \rightarrow P$ by $\phi(t)=t c^{B}+(I-t) c^{W}$.
- Monotonicity: $\phi(t) \succcurlyeq \phi\left(t^{\prime}\right) \Leftrightarrow t \geq t^{\prime}$.
- Continuity: $\forall p \in P, \exists$ unique $U(p) \in[0, I]$ s.t. $p \sim \phi(U(p))$.
- Check Ordinal Representation:
$p \geqslant q \Leftrightarrow \phi(U(p)) \geqslant \phi(U(q)) \Leftrightarrow U(p) \geq U(q)$
- U is linear:

$$
U(a p+(1-a) q)=a U(p)+(1-a) U(q)
$$

- Because $a p+(I-a) q \sim a \phi(U(p))+(I-a) \phi(U(q))$ $=\phi(a U(p)+(1-a) U(q))$,
-

Indifference Sets under Independence Axiom

1. Indifference sets are straight lines
2. ... and parallel to each other.

Example: $C=\{x, y, z\}$

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

