14.123 Problem Set 1 Solution

Suehyun Kwon
Q1. Let P be the set of all lotteries $p=\left(p_{x}, p_{y}, p_{z}\right)$ on a set $C=\{x, y, z\}$ of consequences. Below, you are given pairs of indifference sets on P. For each pair, check whether the indifference sets belong to a preference relation that has a Von-Neumann and Morgenstern representation (i.e. expected utility representation). If the answer is Yes, provide a Von-Neumann and Morgenstern utility function; otherwise show which Von-Neumann and Morgenstern axiom is violated. (In the figures below, setting $p_{z}=1-p_{x}-p_{y}$, we describe P as a subset of \mathbb{R}^{2}.)
(a) $I_{1}=\left\{p \mid 1 / 2 \leq p_{y} \leq 3 / 4\right\}$ and $I_{2}=\left\{p \mid p_{y}=1 / 4\right\}$:

No, the Independence Axiom is violated. I'll use (2.2) from Question 2. Take $(1 / 4,3 / 4),(1 / 2,1 / 2) \in I_{1}$ and $a=2$. From $(1 / 4,3 / 4) \sim(1 / 2,1 / 2)$, we have

$$
\begin{aligned}
(1 / 4,3 / 4) & =2(1 / 4,3 / 4)+(-1)(1 / 4,3 / 4) \\
& \sim 2(1 / 2,1 / 2)+(-1)(1 / 4,3 / 4)=(3 / 4,1 / 4)
\end{aligned}
$$

which is a contradiction to $(3 / 4,1 / 4) \in I_{2}$.
(b) $I_{1}=\left\{p \mid p_{y}=p_{x}\right\}$ and $I_{2}=\left\{p \mid p_{y}=p_{x}+1 / 2\right\}$:

Yes, an example is $U(p)=p_{x}-p_{y}$.
Q2. For any preference relation that satisfies the Independence Axiom, show that the following are true.
(a) For any $p, q, r, r^{\prime} \in P$ with $r \sim r^{\prime}$ and any $a \in(0,1]$,

$$
\begin{equation*}
a p+(1-a) r \succeq a q+(1-a) r^{\prime} \Leftrightarrow p \succeq q \tag{1}
\end{equation*}
$$

$r \sim r^{\prime}$ implies that $r \succeq r^{\prime}$ and $r^{\prime} \succeq r$. From the Independence Axiom, for any $a \in(0,1]$,

$$
p \succeq q \Longleftrightarrow a p+(1-a) r \succeq a q+(1-a) r
$$

The Independence Axiom also implies that

$$
\begin{aligned}
a q+(1-a) r & \succeq a q+(1-a) r^{\prime} \\
a q+(1-a) r^{\prime} & \succeq a q+(1-a) r
\end{aligned}
$$

and we have

$$
\begin{gathered}
a p+(1-a) r \succeq a q+(1-a) r \Longrightarrow a p+(1-a) r \succeq a q+(1-a) r^{\prime}, \\
a p+(1-a) r \succeq a q+(1-a) r^{\prime} \Longrightarrow a p+(1-a) r \succeq a q+(1-a) r
\end{gathered}
$$

by transitivity.

$$
p \succeq q \Longleftrightarrow a p+(1-a) r \succeq a q+(1-a) r^{\prime} .
$$

(b) For any $p, q, r \in P$ and any real number a such that $a p+(1-a) r, a q+$ $(1-a) r \in P$,

$$
\begin{equation*}
\text { if } p \sim q, \text { then } a p+(1-a) r \sim a q+(1-a) r . \tag{2}
\end{equation*}
$$

The case $a \in(0,1]$ is given by the Independence Axiom, and the case $a=0$ always holds from $r \sim r$.

For $a>1,1 / a \in(0,1]$, and the Independence Axiom gives that

$$
\begin{aligned}
& a p+(1-a) r \sim a q+(1-a) r \\
\Longleftrightarrow & \frac{1}{a}(a p+(1-a) r)+\frac{a-1}{a} r \sim \frac{1}{a}(a q+(1-a) r)+\frac{a-1}{a} r \\
\Longleftrightarrow & p \sim q .
\end{aligned}
$$

For $a<0,1 /(1-a) \in(0,1]$, and if $p \sim q$,

$$
\begin{aligned}
\frac{1}{1-a}(a p+(1-a) r)+\frac{-a}{1-a} q & \sim \frac{1}{1-a}(a p+(1-a) r)+\frac{-a}{1-a} p \\
& \sim r \\
& \sim \frac{1}{1-a}(a q+(1-a) r)+\frac{-a}{1-a} q .
\end{aligned}
$$

By the Independence Axiom, we have

$$
a p+(1-a) r \sim a q+(1-a) r .
$$

Therefore, for any $a \in \mathbb{R}$ such that $a p+(1-a) r, a q+(1-a) r \in P$,

$$
\text { if } p \sim q, \text { then } a p+(1-a) r \sim a q+(1-a) r .
$$

(c) For any $p, q \in P$ with $p \succ q$ and any $a, b \in[0,1]$ with $a>b$,

$$
\begin{equation*}
a p+(1-a) q \succ b p+(1-b) q . \tag{3}
\end{equation*}
$$

If $b=0$, the Independence Axiom gives that

$$
a p+(1-a) q \succ a q+(1-a) q \sim q
$$

For $b>0$, we have $b / a \in(0,1)$, and

$$
\begin{aligned}
a p+(1-a) q & \succ q \\
\Longrightarrow a p+(1-a) q & \sim \frac{b}{a}(a p+(1-a) q)+\frac{a-b}{a}(a p+(1-a) q) \\
& \succ \frac{b}{a}(a p+(1-a) q)+\frac{a-b}{a} q \sim b p+(1-b) q .
\end{aligned}
$$

(d) There exist $c^{B}, c^{W} \in C$ such that for any $p \in P$,

$$
\begin{equation*}
c^{B} \succeq p \succeq c^{W} \tag{4}
\end{equation*}
$$

[Hint: use completeness and transitivity to find $c^{B}, c^{W} \in C$ with $c^{B} \succeq c \succeq$ c^{W} for all $c \in C$; then use induction on the number of consequences and the Independence Axiom.]

The set of consequences C is finite. Let n be the number of consequences. When $n=1, c^{B} \sim p \sim c^{W}$ for all $p \in P$.

Suppose that for $n=k$, there exist $c^{B}, c^{W} \in C$ such that for any $p \in P$,

$$
\begin{equation*}
c^{B} \succeq p \succeq c^{W} \tag{*}
\end{equation*}
$$

Consider $n=k+1$. Let $C=\left\{c_{1}, \cdots, c_{k+1}\right\}$ and $C^{\prime}=\left\{c_{1}, \cdots, c_{k}\right\}$. From $(*)$, there exist $c^{B^{\prime}}, c^{W^{\prime}} \in C^{\prime}$ such that $c^{B^{\prime}} \succeq p^{\prime} \succeq c^{W^{\prime}}$. If $c_{k+1} \succ c^{B^{\prime}}$, let $c^{B}=c_{k+1}, c^{W}=c^{W^{\prime}}$. If $c^{W^{\prime}} \succ c_{k+1}$, let $c^{B}=c^{B^{\prime}}, c^{W}=c_{k+1}$. Otherwise, $c^{B}=c^{B^{\prime}}, c^{W}=c^{W^{\prime}}$. Any $p \in P$ can be written as $p=a p^{\prime}+(1-a) c_{k+1}$ for some $a \in[0,1]$ and a lottery p^{\prime} over $C^{\prime}=\left\{c_{1}, \cdots, c_{k}\right\}$.

We have $c^{B} \succeq p^{\prime}, c_{k+1} \succeq c^{W}$, and by the Independence Axiom,

$$
\begin{aligned}
c^{B} & \succeq a p^{\prime}+(1-a) c^{B} \\
& \succeq a p^{\prime}+(1-a) c_{k+1}=p \\
& \succeq a p^{\prime}+(1-a) c^{W} \\
& \succeq c^{W}
\end{aligned}
$$

Q3. Let P be the set of probability distribution on $C=\{x, y, z\}$. Find a continuous preference relation \succeq on P, such that the indifference sets are all straight lines, but \succeq does not have a von Neumann-Morgenstern utility representation.

Consider a preference relation represented by the following utility function

$$
U\left(p_{x}, p_{y}, p_{z}\right)=\frac{p_{y}}{2-p_{x}} .
$$

\succeq is complete, transitive and continuous, and the indifference set are straight lines, but the Independence Axiom is not satisfied.

Q4. Let \succeq be the "at least as likely as" relation defined between events in Lecture 3 . Show that \succeq is a qualitative probability.

From $P 1, \succeq$ is a preference relation, which implies that it's complete and transitive.

The second part follows from

$$
\begin{align*}
B \succeq C & \Longleftrightarrow f_{B}^{x, x^{\prime}} \succeq f_{C}^{x, x^{\prime}} \text { for some } x, x^{\prime} \in C, x \succ x^{\prime} \\
& \Longleftrightarrow f_{B \cup D}^{x, x^{\prime}} \succeq f_{C \cup D}^{x, x^{\prime}} \\
& \Longleftrightarrow B \cup D \succeq C \cup D .
\end{align*}
$$

Lastly, from $P 4$, there exists $x, x^{\prime} \in C$ with $x \succ x^{\prime}$. For any event B,

$$
\begin{align*}
x \succ x^{\prime} & \Longrightarrow f_{B}^{x, x^{\prime}} \succeq f_{\emptyset}^{x, x^{\prime}} \\
& \Longleftrightarrow B \succeq \emptyset .
\end{align*}
$$

Given any $x, x^{\prime} \in C$ with $x \succ x^{\prime}$, we have $f_{S}^{x, x^{\prime}} \succeq f_{\emptyset}^{x, x^{\prime}}$ from $P 2$. There exist no $x, x^{\prime} \in C$ with $x \succ x^{\prime}$ such that $f_{\emptyset}^{x, x^{\prime}} \succeq f_{S}^{x, x^{\prime}}$.

$$
S \succeq \emptyset, \emptyset \nsucceq S \Longrightarrow S \succ \emptyset .
$$

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

