Problem Set 2 - Solutions

Question (i)

Part 1

Assume first that for every $P \in \Delta(S), P_{X}$ FOSD P_{Y}. Fix $s \in S$ and take P such that $P(s)=1$. Since P_{X} FOSD P_{Y}, it must be that

$$
u(X(s))=E_{P}[u(X)] \geqslant E_{P}[u(Y)]=u(Y(s))
$$

for all $u: \mathbb{R} \rightarrow \mathbb{R}$ increasing. Therefore, by taking u to be the identity function, we get $X(s) \geqslant Y(s)$. Since the choice of s was arbitrary, we obtain that $X \geqslant Y$, as wanted.

Assume now that $X \geqslant Y$. Fix $P \in \Delta(S)$ and $u: \mathbb{R} \rightarrow \mathbb{R}$ increasing. Since $X \geqslant Y$, we have that $u(X) \geqslant u(Y)$. By monotonicity of the expectation $E_{P}[u(X)] \geqslant E_{P}[u(Y)]$. Since the choice of P and u was arbitrary, we get that P_{X} FOSD P_{Y} for all $P \in \Delta(S)$, as wanted.

Part 2

Let $S=\{1,2\}, X(s)=s$, while $Y(1)=2$ and $Y(2)=1$. Pick $P \in \Delta(S)$ such that $P(2)=1$. Then P_{X} FOSD P_{Y} but $X \neq Y$.

Question (ii)

See solution to Question 2 from 2014 pset2. Aside: the statement of this question should be interpreted as follows: Find $u \in \mathcal{U}$ and $G \in \mathbb{R}$ to minimize G subject to $\frac{1}{2} u\left(w_{0}+G\right)+\frac{1}{2} u\left(w_{0}-L\right) \geqslant u\left(w_{0}\right)$. In other words, you are free to choose both u and G.

Question (iii)

See solution to Question 1 from 2014 pset3.

Question (iv)

See solution to Question 3 from 2014 pset3.

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

