Subjective Expected Utility

Tommaso Denti

March 8, 2015

We will go over Savage's subjective expected utility, and provide a very rough sketch of the argument he uses to prove his representation theorem. Aside from the lecture notes, good references are chapters 8 and 9 in "Kreps (1988): Notes on the Theory of Choice," and chapter 11 in "Gilboa (2009): Theory of Decision under Uncertainty." ${ }^{1}$

Let S be a set of states. We call events subsets of S, which we typically denote by A, B, C, \ldots Write \mathcal{S} for the collection of all events, that is, the collection of all subsets of $S . \underline{2}$ Let X a finite set of consequence. ${ }^{3}$ A (Savage) act is a function $f: S \rightarrow X$, mapping states into consequences. Denote by F the set of all acts, and \gtrsim is a preference relation on F. As usual, \gtrsim represents the DM's preferences over alternatives. In Savage, alternative are acts.

Now we introduce an important operation among acts: For $f, g \in F$ and $A \in \mathcal{S}$ define the act $f_{A} g$ such that

$$
f_{A} g(s)= \begin{cases}f(s) & \text { if } s \in A \\ g(s) & \text { else. }\end{cases}
$$

In words, the act $f_{A} g$ is equal to f on A, while equal to g on the complement on $A . .^{4}$ This operation allows us to make "conditional" statements: if A is true, this happens; if not, this other thing happens.

Let's list Savage's axioms, which are commonly referred as P1, P2, ...
Axiom 1 (P1). The relation \gtrsim is complete and transitive.
Usual rationality assumption.
Axiom 2 (P2). For $f, g, h, h^{\prime} \in F$ and $A \in \mathcal{S}$,

$$
f_{A} h \gtrsim g_{A} h \quad \Leftrightarrow \quad f_{A} h^{\prime} \gtrsim g_{A} h^{\prime} .
$$

[^0]"Sure-thing principle." To state the next axion, say that an event $A \in \mathcal{S}$ is null if $x_{A} y \sim y_{A} x$ for all $x, y \in X \stackrel{5}{\square}$

Axiom 3 (P3). For $A \in \mathcal{S}$ not null event, $f \in F$ and $x, y \in X$,

$$
x \gtrsim y \quad \Leftrightarrow \quad x_{A} f \gtrsim y_{A} f
$$

Monotonicity (state-by-state) requirement.
Axiom 4 (P4). For $A \in \mathcal{S}$ and $x, y, w, z \in X$ with $x>y$ and $w>z$

$$
x_{A} y \gtrsim x_{B} y \quad \Leftrightarrow \quad w_{A} z \gtrsim w_{B} z
$$

Provide a meaning to likelihood statement defined by betting behavior (see $\grave{\gtrsim}$ later).
Axiom 5 (P5). There are $f, g \in F$ such that $f>g$.
This is simply a non-triviality requirement.
Axiom 6 (P6). For every $f, g, h \in F$ with $f>g$ there exists a finite partition $\left\{A_{1}, \ldots, A_{n}\right\}$ of S such that for all $i=1, \ldots, n$

$$
h_{A_{i}} f>g \quad \text { and } \quad f>h_{A_{i}} g .
$$

Innovative Savage's continuity axiom. From now on we will assume that \gtrsim satisfies P1P6. We will sketch Savage's argument to find a utility function $u: X \rightarrow \mathbb{R}$ and a probability $\mathbb{P}: \mathcal{S} \rightarrow[0,1]$ such that for every $f, g \in F$

$$
f \gtrsim g \quad \Leftrightarrow \quad E_{\mathbb{P}}[u(f)] \geqslant E_{\mathbb{P}}[u(g)] .
$$

The first part of the argument is devoted to elicit \mathbb{P} (step 1 and 2). The second part, instead, find u by using the elicited \mathbb{P} (step 3).

Step 1: Qualitative Probability

Take two consequences $x, y \in X$ such that $x>y$. Define the binary relation $\grave{\succsim}$ over \mathcal{S} such that

$$
A \gtrsim B \quad \text { if } \quad x_{A} y \gtrsim x_{B} y .
$$

From P4 the definition of \gtrsim does not depend on the choice of x and y. We interpret the statement " $A 亡 B$ " as "the DM considers event A at least as likely as event B." We do so because, according to $x_{A} y \gtrsim x_{B} y$, the DM prefers to bet on A rather than on B.
Claim 1. The relation $\dot{\gtrsim}$ satisfies the following properties:

[^1](i) $\grave{¿}$ is complete and transitive.
(ii) $A \gtrsim \varnothing$ for all $A \in \mathcal{S}$.
(iii) $S \dot{>} \varnothing$
(iv) if $A \cap C=B \cap C=\varnothing$, then $A \gtrsim B$ if and only if $A \cup C 亡 A \cup B$.
(v) If $A \dot{>} B$, then there is a finite partition $\left\{C_{1}, \ldots, C_{n}\right\}$ of S such that
$$
A \Varangle B \cup C_{k} \quad \forall k=1, \ldots, n .
$$

This claim is relatively easy to prove. Because $\grave{\gtrsim}$ satisfies (i)-(iv), $\grave{\gtrsim}$ is called a qualitative probability. Savage's main innovation is (v), which comes from P6. Indeed, if only (i)-(iv) are satisfied, we may not be able to find a numerical representation of $\grave{\succsim}$.

Step 2: Quantitative Probability

A quantitative probability is a function $\mathbb{P}: \mathcal{S} \rightarrow[0,1]$ such that (i) $\mathbb{P}(S)=1$, and (ii) $\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)$ when $A \cap B=\varnothing \underline{6}$

Claim 2. There exists a quantitative probability \mathbb{P} representing the qualitative probability $\dot{\gtrsim}$:

$$
A \grave{\succsim} B \quad \Leftrightarrow \quad \mathbb{P}(A) \geqslant \mathbb{P}(B) \quad \forall A, B \in \mathcal{S} .
$$

Furthermore, for all $A \in \mathcal{S}$ and $\alpha \in[0,1]$ there exists $B \subset A$ such that $\mathbb{P}(B)=\alpha \mathbb{P}(A)$.
The second part of the claim says that \mathbb{P} is non-atomic: any set with positive probability can be "chopped" to reduce its probability by an arbitrary amount. For instance, the uniform distribution has this property. Observe that there cannot be a non-atomic probability defined on a finite set (why?). Therefore, Savage's theory does not apply when S is finite. The proof of Claim 2 is somehow the core of Savage's argument, and the one thing should be remembered. Let's see an heuristic version of it:
"Proof". Fix an event B. We wish to assign a number $\mathbb{P}(B) \in[0,1]$ to B representing the likelihood of B according to DM. To do so, first we use (v) in Claim 1 to find for every $n=1,2, \ldots$ a partition $\left\{A_{1}^{(n)}, \ldots, A_{2^{n}}^{(n)}\right\}$ of S such that $A_{1}^{(n)} \dot{\sim} \ldots \dot{\sim} A_{2^{n}}^{(n)}$. Clearly we should assign probability $1 / 2^{n}$ to event $A_{i}^{(n)}$ for $i=1, \ldots, 2^{n}$, and we can use this to assign a probability to B. Indeed, for every n we can find $k(n) \in\left\{1, \ldots, 2^{n}\right\}$ such that

$$
\cup_{i=1}^{k(n)} A_{i}^{(n)} \dot{>} B \dot{\gtrsim} \cup_{i=1}^{k(n)-1} A_{i}^{(n)} .
$$

[^2]This means that the probability of B should be at most $k(n) / 2^{n}$ and at least $(k(n)-1) / 2^{n}$. As n gets large, the bounds on the probability of B get closer and closer, so it makes sense to define

$$
\mathbb{P}(B)=\lim _{n \rightarrow \infty} \frac{k(n)}{2^{n}}
$$

Then there is a substantial amount of work to verify that this guess for $\mathbb{P}(B)$ is actually correct, and the resulting \mathbb{P} meets the requirements (additivity, representing $\dot{\succsim}$).

Step 3: Acts as Lotteries

Now that we have a probability \mathbb{P} over S, it is "not hard" to elicit u. The idea is to find a way to apply the mixture space theorem. First we use acts to induce lotteries over X. For $f \in F$, define $P_{f} \in \Delta(X)$ as the distribution of f under P, that is: for all $x \in X$

$$
P_{f}(x)=\mathbb{P}(\{s \in S: f(s)=x\})
$$

If the \mathbb{P} we found is correct, better be the case that P_{f} and P_{g} contain all the information about f and g the DM uses to rank f and g. In fact:
Claim 3. For every $f, g \in F$, if $P_{f}=P_{g}$, then $f \sim g$.
This claim is very tedious to prove. It is easier to prove the following, using the fact that \mathbb{P} is non-atomic (second part of Claim 2):
Claim 4. $\Delta(X)=\left\{P_{f}: f \in F\right\}$.
The claim says that for any lottery over X we can find an act generating it. Therefore, using Claim 3 and 4 we can well define a preference relation \gtrsim^{*} over $\Delta(X)$ such that for $P, Q \in \Delta(X)$

$$
P \gtrsim^{*} Q \text { if there are } f, g \in F \text { such that } P=P_{f}, Q=P_{g} \text { and } f \gtrsim g
$$

Claim 5. The relation \gtrsim^{*} on $\Delta(X)$ satisfies the assumption of the mixture space theorem (complete and transitive, continuity, independence).

Once we have Claim 5, we can apply the mixture space theorem and find $u: X \rightarrow \mathbb{R}$ such that for all $P, Q \in \Delta(X)$

$$
P \gtrsim^{*} Q \Leftrightarrow \sum_{x \in X} P(x) u(x) \geqslant \sum_{x \in X} Q(x) u(x)
$$

Now we have both \mathbb{P} and u. Hence we can go back to \gtrsim and verify that for all $f, g \in F$

$$
f \succsim g \quad \Leftrightarrow \quad E_{\mathbb{P}}[u(f)] \geqslant E_{\mathbb{P}}[u(g)] .
$$

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ Gilboa gives a broad overview, while Kreps provides more details and is more technical.
 ${ }^{2}$ Technicality: there are no algebras nor sigma-algebras in Savage's theory.
 ${ }^{3}$ Savage works with an arbitrary (possibly infinite) X. If so, another axiom, called P7, should be added to the list. It is a technical axiom, unavoidable but without essential meaning.
 ${ }^{4}$ Usually $f_{A} g$ is defined as the act which is equal to g on A, while equal to f otherwise. Of course the different in the definition is irrelevant.

[^1]: ${ }^{5}$ Null events will be the events with zero probability, events that the DM is certain they will not happen.

[^2]: ${ }^{6}$ Technicality: note that P is additive, but possibly not sigma-additive.

