14.123 Microeconomic Theory III Problem Set 1

1. Let P be the set of all lotteries $p=\left(p_{x}, p_{y}, p_{z}\right)$ on a set $C=\{x, y, z\}$ of consequences. Below, you are given pairs of indifference sets on P. For each pair, check whether the indifference sets belong to a preference relation that has a Von-Neumann and Morgenstern representation (i.e. expected utility representation). If the answer is Yes, provide a Von-Neumann and Morgenstern utility function; otherwise show which Von-Neumann and Morgenstern axiom is violated. (In the figures below, setting $p_{z}=$ $1-p_{x}-p_{y}$, we describe P as a subset of \mathbb{R}^{2}.)
(a) $I_{1}=\left\{p \mid 1 / 2 \leq p_{y} \leq 3 / 4\right\}$ and $I_{2}=\left\{p \mid p_{y}=1 / 4\right\}$:

(b) $I_{1}=\left\{p \mid p_{y}=p_{x}\right\}$ and $I_{2}=\left\{p \mid p_{y}=p_{x}+1 / 2\right\}$:

2. For any preference relation \succeq that satisfies the Independence Axiom, show that the following are true.
(a) For any $p, q, r, r^{\prime} \in P$ with $r \sim r^{\prime}$ and any $a \in(0,1]$,

$$
\begin{equation*}
a p+(1-a) r \succeq a q+(1-a) r^{\prime} \Longleftrightarrow p \succeq q . \tag{1}
\end{equation*}
$$

(b) For any $p, q, r \in P$ and any real number a such that $a p+(1-a) r, a q+(1-a) r \in P$,

$$
\begin{equation*}
\text { if } p \sim q \text {, then } a p+(1-a) r \sim a q+(1-a) r . \tag{2}
\end{equation*}
$$

(c) For any $p, q \in P$ with $p \succ q$ and any $a, b \in[0,1]$ with $a>b$,

$$
\begin{equation*}
a p+(1-a) q \succ b p+(1-b) q \tag{3}
\end{equation*}
$$

(d) There exist $c^{B}, c^{W} \in C$ such that for any $p \in P$,

$$
\begin{equation*}
c^{B} \succeq p \succeq c^{W} . \tag{4}
\end{equation*}
$$

[Hint: use completeness and transitivity to find $c^{B}, c^{W} \in C$ with $c^{B} \succeq c \succeq c^{W}$ for all $c \in C$; then use induction on the number of consequences and the Independence Axiom.]
3. Let P be the set of probability distributions on $C=\{x, y, z\}$. Find a continuous preference relation \succeq on P, such that the indifference sets are all straight lines, but \succeq does not have a von Neumann-Morgenstern utility representation.
4. Let $\grave{\succeq}$ be the "at least as likely as" relation defined between events in Lecture 3. Show that $\grave{\succeq}$ is a qualitative probability.

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

