Decision Making Under Risk - Summary

- $C=$ Finite set of consequences
- $X=P=$ lotteries (prob. distributions on C)
- Expected Utility Representation:

$$
p \geq q \Leftrightarrow \sum_{c \in C} u(c) p(c) \geq \sum_{c \in C} u(c) q(c)
$$

- Theorem: EU Representation \Leftrightarrow continuous preference relation with Independence Axiom:

$$
a p+(\mathrm{I}-a) r \geqslant a q+(\mathrm{I}-a) r \leftrightarrow p \geqslant q .
$$

Risk v. Uncertainty

।. Risk = DM has to choose from alternatives
I. whose consequences are unknown
2. But the probability of each consequence is given
2. Uncertainty $=\mathrm{DM}$ has to choose from alternatives

1. whose consequences are unknown
2. the probability of consequences is not given
3. DM has to form his own beliefs
4. Von Neumann-Morgenstern: Risk
5. Goal:
6. Convert uncertainty to risk by formalizing and eliciting beliefs
7. Apply Von Neumann Morgenstern analysis

Road map

1. Acts, States, Consequences
2. Expected Utility Maximization - Representation
3. Sure-Thing Principle
4. Conditional Preferences
5. Eliciting Qualitative Beliefs
6. Representing Qualitative Beliefs with Probability
7. Expected Utility Maximization - Characterization
8. Anscombe \& Aumann trick: use indifference between uncertain and risky events

Model

- $C=$ Finite set of consequences
- $S=A$ set of states (uncountable)
- Act: a mapping $f: S \rightarrow C$
- $X=F:=C^{s}$
- DM cares about consequences, chooses an act, without knowing the state
- Example: Should I take my umbrella?
- Example: A game from a player's point of view

Expected-Utility Representation

$\geqslant \geqslant=$ a relation on F

- Expected-Utility Representation:
- A probability distribution p on S with expectation E
- AVNM utility function $u: C \rightarrow R$ such that

$$
f \succcurlyeq g \Leftrightarrow U(f) \equiv E\left[u^{\circ} f\right] \geq E\left[u^{\circ} g\right] \equiv U(g)
$$

- Necessary Conditions:

PI: \succcurlyeq is a preference relation

Sure-Thing Principle

- If
- $f \succcurlyeq g$ when DM knows $B \subseteq S$ occurs,
- $f \succcurlyeq g$ when DM knows $S \backslash B$ occurs,
- Then $f \geqslant g$
- when DM doesn't know whether B occurs or not.

P2: Let f, f, g, g^{\prime} and B be such that

- $f(s)=f(s)$ and $g(s)=g^{\prime}(s)$ at each $s \in B$
- $f(s)=g(s)$ and $f(s)=g^{\prime}(s)$ at each $s \in S \backslash B$.

Then, $f \geqslant g \Leftrightarrow f \geqslant g^{\prime}$.

Sure-Thing Principle - Picture

Conditional Preference

- For any acts f and h and event B,

$$
f_{\mid B}^{h}(s)=\left\{\begin{array}{cc}
f(s), & \text { if } s \in B \\
h(s), & \text { otherwise }
\end{array}\right.
$$

- Definition: $f \succcurlyeq g$ given $B \Leftrightarrow f_{\mid B}{ }^{h} \succcurlyeq g_{\mid B}{ }^{h}$.
- Sure-Thing Principle = conditional preference is well-defined
- Informal Sure-Thing Principle, formally:
- $f \succcurlyeq g$ given $B: f_{\mid B}{ }^{f} \geqslant g_{\mid B}{ }^{f}$.
- $f \geqslant g$ given $S \backslash B: f_{|S| B^{g}} \geqslant g_{|S| B}$.
- Transitivity: $f=f_{\mid B}{ }^{f} \geqslant g_{\mid B}{ }^{f}=f_{|S| B^{g}} \geqslant g_{|S| B^{g}}=g$.
- B is null $\Leftrightarrow f \sim g$ given B for all $f, g \in F$.

P3: For any $x, x^{\prime} \in C, f, f \in F$ with $f \equiv x$ and $f^{\prime} \equiv x^{\prime}$, and any non-null B, $f \geqslant f$ given $B \Leftrightarrow x \geqslant x^{\prime}$.

Eliciting Beliefs

- For any $A \subseteq S$ and $x, x^{\prime} \in C$, define $f_{A}^{x, x^{\prime}}$ by

$$
f_{A}^{x, x^{\prime}}(s)= \begin{cases}x, & \text { if } s \in A \\ x^{\prime}, & \text { otherwise }\end{cases}
$$

- Definition: For any $A, B \subseteq S$,

$$
A \succcurlyeq B \Leftrightarrow f_{A}^{x, x^{\prime}} \succcurlyeq f_{B}^{x, x^{\prime}}
$$

for some $x, x^{\prime} \in C$ with $x>x^{\prime}$.

- $A \succcurlyeq B$ means A is at least as likely as B.

P4: There exist $x, x^{\prime} \in C$ such that $x>x^{\prime}$.
P5: For all $A, B \subseteq S, x, x^{\prime}, y, y^{\prime} \in C$ with $x>x^{\prime}$ and $y>y^{\prime}$,

$$
f_{A}^{x, x^{\prime}} \succcurlyeq f_{B}^{x, x^{\prime}} \Leftrightarrow f_{A^{\prime}, y^{\prime}}^{x} \succcurlyeq f_{B}^{x, y^{\prime}}
$$

Qualitative Probability

Definition: A relation \succcurlyeq between the events is said to be a qualitative probability iff
।. \succcurlyeq is complete and transitive;
2. for any $B, C, D \subseteq S$ with $B \cap D=C \cap D=\varnothing$,
$B \geqslant C \Leftrightarrow B \cup D \geqslant C \cup D ;$
3. $B \geqslant \emptyset$ for each $B \subseteq S$, and $S>\emptyset$.

Fact: "At least as likely as" relation above is a qualitative probability relation.

Quantifying qualitative probability

- For any probability measure p and relation \succcurlyeq on events, p is a probability representation of \succcurlyeq iff

$$
B \geqslant C \Leftrightarrow p(B) \geq p(C) \forall B, C \subseteq S .
$$

- If \succcurlyeq has a probability representation, then \succcurlyeq is qualitative probability.
- S is infinitely divisible under \succcurlyeq iff $\forall n, S$ has a partition $\left\{D_{1}{ }^{\prime}, \ldots\right.$, $D_{n}{ }^{2 \wedge} n$ such that $D_{1}{ }^{\prime} \sim \ldots \sim D_{n}{ }^{2 \wedge}{ }^{n}$.
P6: For any $x \in C, g, h \in F$ with $g>h, S$ has a partition

$$
\left\{D^{\prime}, \ldots, D^{n}\right\} \text { s.t. }
$$

$$
g>h_{i}^{x} \text { and } g_{i}^{x}>h
$$

for all $\mathrm{i} \leq \mathrm{n}$ where $h_{i}^{x}(s)=x$ if $s \in D^{i}$ and $h(s)$ otherwise.

- P6 implies that S is infinitely divisible under \succcurlyeq.

Probability Representation

Theorem: Under PI-P6, \succcurlyeq has a unique probability representation p.
Proof:

- For any event B and n, define

$$
k(n, B)=\max \left\{r \mid B \geqslant D_{n}{ }^{\prime} \cup \ldots \cup D_{n}{ }^{r}\right\}
$$

- Define $p(B)=\lim _{n} k(n, B) / 2^{n}$.
- $B \geqslant C \Rightarrow k(n, B) \geq k(n, C) \forall n \Rightarrow p(B) \geq p(C)$.
- P6': If $B>C, S$ has a partition $\left\{D^{\prime}, \ldots, D^{n}\right\}$ s.t. $B>C \cup D^{i}$ for each $i \leq n$.
- $B>C \Rightarrow p(B)>p(C)$.
- Uniqueness: $k(n, B) / 2^{n} \leq p^{\prime}(B)<(k(n, B)+I) / 2^{n}$

Expected Utility Maximization Characterization

Theorem: Assume that C is finite. Under PI-P6, there exist a utility function $u: C \rightarrow R$ and a probability measure p on S such that $\forall f, g \in F$,

$$
f \succeq g \Longleftrightarrow \sum_{c \in C} p(\{s \mid f(s)=c\}) u(c) \geq \sum_{c \in C} p(\{s \mid g(s)=c\}) u(c)
$$

MIT OpenCourseWare
http://ocw.mit.edu
14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

