

Eliciting Beliefs • For any $A \subseteq S$ and $x, x' \in C$, define $f_A^{x,x'}$ by $f_A^{x,x'}(s) = \begin{cases} x, & \text{if } s \in A \\ x', & \text{otherwise} \end{cases}$ • **Definition:** For any $A, B \subseteq S$, $A \ge B \Leftrightarrow f_A^{x,x'} \ge f_B^{x,x'}$ for some $x, x' \in C$ with x > x'. • $A \ge B$ means A is at least as likely as B. P4: There exist $x, x' \in C$ such that x > x'. P5: For all $A, B \subseteq S, x, x', y, y' \in C$ with x > x' and y > y', $f_A^{x,x'} \ge f_B^{x,x'} \Leftrightarrow f_A^{y,y'} \ge f_B^{y,y'}$

Expected Utility Maximization – Characterization **Theorem:** Assume that *C* is finite. Under PI-P6, there exist a utility function $u: C \to R$ and a probability measure *p* on *S* such that $\forall f,g \in F$, $f \succeq g \iff \sum_{c \in C} p\left(\{s | f(s) = c\}\right) u(c) \ge \sum_{c \in C} p\left(\{s | g(s) = c\}\right) u(c)$ 14.123 Microeconomic Theory III Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.