Problem 1

Throughout this problem, note that conditional preference is well-defined, by P2.
(a) True. I show that B_{1} and B_{2} are null if and only if $B_{1} \cup B_{2}$ is null. The result follows by induction on n.

Suppose that B_{1} and B_{2} are null. Then, for all $f, g, h \in F$,

$$
f_{\mid B_{1} \cup B_{2}}^{h}=f_{\mid B_{1}}^{f_{\mid B_{2}}^{h}} \sim g_{\mid B_{1}}^{f_{\mid B_{2}}^{h}}=\left(f_{B_{2} \backslash B_{1}}^{g}\right)_{\mid B_{2}}^{g_{\mid B_{1}}^{h}} \sim g_{\mid B_{2}}^{g_{\mid B_{1}}^{h}}=g_{\mid B_{1} \cup B_{2}}^{h},
$$

where the first \sim follows because B_{1} is null and the second \sim follows because B_{2} is null. By definition, this implies that $B_{1} \cup B_{2}$ is null.

Suppose that $B_{1} \cup B_{2}$ are null. Then, for all $f, g, h \in F$,

$$
f_{\mid B_{1}}^{h}=\left(f_{\mid B_{1}}^{h}\right)_{\mid B_{1} \cup B_{2}}^{h} \sim\left(g_{\mid B_{1}}^{h}\right)_{\mid B_{1} \cup B_{2}}^{h}=g_{\mid B_{1}}^{h} .
$$

By definition, this implies that B_{1} is null. Similarly, B_{2} is null.
(b) True. Since C is finite, there exists a finite partition $\left\{D^{1}, \ldots, D^{n}\right\}$ of S such that, if $s, s^{\prime} \in D^{i}$ for some $i \in\{1, \ldots, n\}$, then $f(s)=f\left(s^{\prime}\right)$ and $g(s)=g\left(s^{\prime}\right)$. Let $C^{0}=\emptyset$ and let $C^{i}=\bigcup_{k=1}^{i} D^{k}$. For any $i \in\{1, \ldots, n\}$, let f_{x} be the constant act that always yields consequence $x \equiv f(s)$ for some $s \in D^{i}$ and let f_{y} be the constant act that always yields consequence $y \equiv g(s)$ for some $s \in D^{i}$. If D^{i} is null then $\left(f_{x}\right)_{\mid D^{i}}^{f_{\mid C i}^{g}} \succsim\left(f_{y}\right)_{\mid D^{i}}^{f_{\mid C^{i}}^{g}}$ trivially, and if D^{i} is non-null then $\left(f_{x}\right)_{\mid D^{i}}^{f_{\mid C^{i}}^{g}} \succsim\left(f_{y}\right)_{\mid D^{i}}^{f_{\mid C^{i}}^{g}}$ by P3. Hence, for every $i \in\{1, \ldots, n\}$,

$$
f_{\mid C^{i}}^{g}=\left(f_{x}\right)_{\mid D^{i}}^{f_{\mid C^{i}}^{g}} \succsim\left(f_{y}\right)_{\mid D^{i}}^{f_{\mid C^{i}}^{g}}=f_{\mid C^{i-1}}^{g} .
$$

Therefore, $f=f_{\mid S}^{g} \succsim f_{\mid \emptyset}^{g}=g$.
(c) False. Let $S=\{s, t\}, C=\left\{x, x^{\prime}, y, y^{\prime}\right\}$. I denote an act $f: S \rightarrow C$ by a pair (a, b), with the interpretation that $f(s)=a$ and $f(t)=b$. Consider the preference relation \succsim given by

$$
\begin{aligned}
(x, x) & \succ\left(x, x^{\prime}\right) \succ\left(x^{\prime}, x\right) \succ\left(x^{\prime}, x^{\prime}\right) \succ(x, y) \\
& \succ\left(x, y^{\prime}\right) \succ\left(x^{\prime}, y\right) \succ\left(x^{\prime}, y^{\prime}\right) \succ(y, x) \\
& \succ\left(y, x^{\prime}\right) \succ\left(y^{\prime}, x\right) \succ\left(y^{\prime}, x^{\prime}\right) \succ(y, y) \\
& \succ\left(y^{\prime}, y\right) \succ\left(y, y^{\prime}\right) \succ\left(y^{\prime}, y^{\prime}\right) .
\end{aligned}
$$

One can check that \succsim satisfies P1-P3, but $x \succ x^{\prime}, y \succ y^{\prime}, f_{\{s\}}^{x, x^{\prime}} \succ f_{\{t\}}^{x, x^{\prime}}$, and $f_{\{t\}}^{y, y^{\prime}} \succ f_{\{s\}}^{y, y^{\prime}}$.

Problem 2

(a) True. By P1-P5, \succsim is a qualitative probability. In what follows, "property 2 " and "property 3 " refer to properties 2 and 3 of qualitative probability, on page 85 in the lecture notes.

I first prove the result in the special case where $B_{1} \cap B_{2}=\emptyset$. Note that

$$
\begin{aligned}
A_{2} \cup\left(A_{1} \backslash B_{2}\right) & \succsim B_{2} \cup\left(A_{1} \backslash B_{2}\right) \quad\left(\text { by } A_{2} \grave{\succsim} B_{2}, A_{1} \cap A_{2}=\emptyset, \text { and property } 2\right) \\
& =A_{1} \cup B_{2} \\
& =A_{1} \cup\left(B_{2} \backslash A_{1}\right) \\
& \succsim B_{1} \cup\left(B_{2} \backslash A_{1}\right)\left(\text { by } A_{1} \succsim B_{1}, B_{1} \cap B_{2}=\emptyset, \text { and property } 2\right) .
\end{aligned}
$$

Since $\left(A_{2} \cup\left(A_{1} \backslash B_{2}\right)\right) \cap\left(A_{1} \cap B_{2}\right)=\emptyset\left(\right.$ by $\left.A_{1} \cap A_{2}=\emptyset\right)$ and $\left(B_{1} \cup\left(B_{2} \backslash A_{1}\right)\right) \cap\left(A_{1} \cap B_{2}\right)=\emptyset$ (by $B_{1} \cap B_{2}=\emptyset$), this implies that (using property 2 again)

$$
A_{1} \cup A_{2}=\left(A_{2} \cup\left(A_{1} \backslash B_{2}\right)\right) \cup\left(A_{1} \cap B_{2}\right) \succsim\left(B_{1} \cup\left(B_{2} \backslash A_{1}\right)\right) \cup\left(A_{1} \cap B_{2}\right)=B_{1} \cup B_{2}
$$

Now suppose that $B_{1} \cap B_{2} \neq \emptyset$. Note that $B_{2} 亡 B_{2} \backslash B_{1}$, because $B_{1} \cap B_{2} \dot{\succsim} \emptyset$ (by property 3), and therefore $B_{2}=\left(B_{1} \cap B_{2}\right) \cup\left(B_{2} \backslash B_{1}\right) \succsim \emptyset \cup\left(B_{2} \backslash B_{1}\right)=\left(B_{2} \backslash B_{1}\right)$ (by property 2). Therefore, $A_{2} \succsim B_{2} \backslash B_{1}$, so the fact that the result holds in the special case where $B_{1} \cap B_{2}=\emptyset$ implies that $A_{1} \cup A_{2} \dot{\succsim} B_{1} \cup\left(B_{2} \backslash B_{1}\right)=B_{1} \cup B_{2}$.
(b) False. For the simplest counterexample, let $D=\emptyset$, in which case clearly $A 亡 \begin{aligned} & \succsim \\ & \text { for }\end{aligned}$ all $A, B \subseteq S$, and in particular $\emptyset \grave{\succsim} S$, which contradicts property 3 of qualitative probability. One can derive a similar contradiction for any null event D, and one can show that \succsim given D is indeed a qualitative probability if D is non-null.
(c) True. Note that, by property 1 of a probability measure (also on page 85 in the lecture notes), $p(\emptyset)=0$ (because $p(\emptyset)=p(\emptyset \cup \emptyset)=2 p(\emptyset)$).

If $A \subseteq S$ is null, then

$$
f_{A}^{x, x^{\prime}}=\left(f_{x}\right)_{\mid A}^{x^{\prime}} \sim\left(f_{x^{\prime}}\right)_{\mid A}^{x^{\prime}}=f_{\emptyset}^{x, x^{\prime}}
$$

and therefore $A \dot{\sim} \emptyset$. Hence, if p represents $\dot{\succsim}$, it follows that $p(A)=p(\emptyset)=0$.
Conversely, if $p(A)=0$, then $p(A)=p(\emptyset)$, so if p represents $\dot{\succsim}$ then $A \dot{\sim} \emptyset$. Therefore, $f_{A}^{x, x^{\prime}}=\left(f_{x}\right)_{\mid A}^{x^{\prime}} \sim\left(f_{x^{\prime}}\right)_{\mid A}^{x^{\prime}}=f_{\emptyset}^{x, x^{\prime}}$. But if A were not null, then P3 would imply that $\left(f_{x}\right)_{\mid A}^{x^{\prime}} \succ$ $\left(f_{x^{\prime}}\right)_{\mid A}^{x^{\prime}}$, so it must be that A is null.

Problem 3

(Thanks to Hongkai Zhang, whose solution I used as a model for this)
As per Muhamet's hint, each player has a well-defined continuation value at every history, and she accepts her opponent's proposal if and only if it gives her expected utility at least as great as her continuation value. Therefore, at every history the proposer proposes a Pareto efficient allocation that gives her opponent exactly her continuation value. Due to CARA utility and normally distributed payoffs, the formula for efficient risk-sharing derived in lecture implies that player i 's time- t proposal is

$$
\begin{aligned}
x_{i}^{t} & =\frac{\alpha_{-i}}{\alpha_{i}+\alpha_{-i}} \sum_{s=t}^{T-1}\left(x_{i, s}+x_{-i, s}\right)+\sum_{s=0}^{t-1} x_{i, s}+\tau_{t} \\
x_{-i}^{t} & =\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}} \sum_{s=t}^{T-1}\left(x_{i, s}+x_{-i, s}\right)+\sum_{s=0}^{t-1} x_{-i, s}-\tau_{t}
\end{aligned}
$$

(noting that $\frac{\alpha_{-i}}{\alpha_{i}+\alpha_{-i}}=\frac{1 / \alpha_{i}}{1 / \alpha_{i}+1 / \alpha_{-i}}$).
It remains only to determine τ_{t} (and to verity that the fixed component of x_{i}^{t} does indeed depend on the history only through t). Note that τ_{t} is determined by the condition that player $-i$ is indifferent between the assets x_{-i}^{t} and x_{i}^{t+1} at time t. Using certainty equivalents, this condition is

$$
\begin{aligned}
& C E_{-i}\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}} \sum_{s=t}^{T-1}\left(x_{i, s}+x_{-i, s}\right)+\sum_{s=0}^{t-1} x_{-i, s}-\tau_{t}\right) \\
&=C E_{-i}\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}} \sum_{s=t+1}^{T-1}\left(x_{i, s}+x_{-i, s}\right)+\sum_{s=0}^{t} x_{-i, s}+\tau_{t+1}\right),
\end{aligned}
$$

or equivalently

$$
\begin{equation*}
C E_{-i}\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}}\left(x_{i, t}+x_{-i, t}\right)-\tau_{t}\right)=C E_{-i}\left(x_{-i, t}+\tau_{t+1}\right) . \tag{1}
\end{equation*}
$$

Recall the following two facts:

1. If X and Y are iid random variables distributed $N\left(0, \sigma^{2}\right)$, then $k(X+Y)$ is distributed $N\left(0,2 k^{2} \sigma^{2}\right)$.
2. With CARA utility, if X is distributed $N\left(\mu, \gamma^{2}\right)$, then $C E(X)=\mu-\frac{\alpha \gamma^{2}}{2}$.

Using these facts, (1) may be rewritten as

$$
-\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}}\right)^{2} \alpha_{-i} \sigma^{2}-\tau_{t}=-\frac{\alpha_{-i} \sigma^{2}}{2}+\tau_{t+1}
$$

or equivalently

$$
\begin{equation*}
\tau_{t}=\left(\frac{1}{2}-\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}}\right)^{2}\right) \alpha_{-i} \sigma^{2}-\tau_{t+1} \tag{2}
\end{equation*}
$$

Noting that $\tau_{T}=0,(2)$ determines τ_{t} for all $t \in\{0, \ldots, T-1\}$ (where $i=1$ if T is odd, and $i=2$ if T is even). (2) can be written more concisely as follows:

$$
\begin{aligned}
\tau_{t} & =\left(\frac{1}{2}-\left(\frac{\alpha_{i}}{\alpha_{i}+\alpha_{-i}}\right)^{2}\right) \alpha_{-i} \sigma^{2}-\tau_{t+1} \text { if } t \text { is even } \\
\tau_{t} & =\left(\frac{T-t+1}{2}\right)\left(\frac{1}{2}+\frac{\alpha_{i} \alpha_{-i}}{\left(\alpha_{i}+\alpha_{-i}\right)^{2}}\right)\left(\alpha_{-i}-\alpha_{i}\right) \sigma^{2} \text { if } t \text { is odd. }
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

14.123 Microeconomic Theory III

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

