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Going to raise the level a little because 14.281 is now taught by 
Juuso and so it is also higher level 
Books: MWG (main book), BDT specifically for contract theory, 
others. MWG’s mechanism design section is outdated 
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Comparison of Distributions
 

First order stochastic dominance (FOSD): 
Definition: Take two distributions F, G. Then we say that F >1 G (F 
first order stochastically dominates G) iff 

1 

2 

3 

y y 
∀u non-decreasing, u(x)dF (x) ≥ u(x)dG(x)
 
F (x) ≤ G(x) ∀x
 
There are x̃ , z̃ random variables s.t. z̃ ≥ 0, x̃ ∼ G, x̃ + z̃ ∼ F , and
 
z̃ ∼ H(z|x) (z ’s distribution could be conditional on x).
 

All these definitions are equivalent. 
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Second order stochastic dominance (SOSD): 
Take two distributions F, G with the same mean. 
Definition: We say that F >2 G (F SOSDs G) iff 

2 

3	 

y y
1	 ∀u concave and nondecreasing, u(x)dF (x) ≥ u(x)dG(x). (F 

has less risk, thus is worth more to a risk-averse agent) y x y x 
0 G(t)dt ≥ 0 F (t)dt ∀x . 

There are x̃ , z̃ random variables such that x̃ ∼ F , x̃ + z̃ ∼ G and 
E(z|x) = 0. (x̃ + z̃ is a mean-preserving spread of x̃). 

All these definitions are equivalent. 
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Monotone likelihood ratio property (MLRP): 
Let F , G be distributions given by densities f , g respectively. Let 

f (x)l(x) = g(x) . 

Intuitively, the statistician observes a draw x from a random 
variable that may have distribution F or G and asks: given the 
realization, is it more likely to come from F or from G? l(x) turns 
out to be the ratio by which we multiply the prior odds to get the 
posterior odds. 
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Definition: The pair (f , g) has the MLRP property if l(x) is
 
non-decreasing.
 
Intuitively, the higher the realized value x , the more likely that it 
was drawn from the high distribution, F . 
MLRP implies FOSD, but it is a stronger condition. You could have 
FOSD and still there might be some high signal values that likely 
come from G. 
For example: suppose f (0) = f (2) = 0.5 and g(1) = g(3) = 0.5. 
Then g FOSDs f but the MLRP property fails (1 is likely to come 
from g, 2 is likely to come from f ). 
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This is often used in models of moral hazard, adverse selection,
 
etc., like so:
 
Let F (x |a) be a family of distributions parameterized/indexed by a.
 
Here a is an action (e.g. effort) or type (e.g. ability) of an agent,
 
and x is the outcome (e.g. the amount produced).
 

f (x1,a2)MLRP tells us that if x2 > x1 and a2 > a1 then f (x2,a2) ≥ . In f (x2,a1) f (x1,a1) 
other words, if the principal observes a higher x , it will guess a 
higher likelihood that it came about due to a higher a. 
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Decision making under uncertainty
 

Premise: you see a signal and then need to take an action. How
 
should we react to the information?
 
Goals:
 

Look for an optimal decision rule. 
Calculate the value of the information we get. (How much more 
utility do we get vs. choosing under ignorance?) 
Can information systems (experiments) be preference-ordered? 
(So you can say experiment A is “more useful” to me than B) 
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Basic structure: 
θ state of the world, e.g., market demand 
y is the information/signal/experimental outcome, e.g., sales 
forecast 
a (final) action, e.g., amount produced 
u(a, θ) payoff from choice a under state θ, e.g., profits 

This may be money based: e.g., x(a, θ) is the money generated and 
u(a, θ) = ũ(x(a, θ)) where ũ(x) is utility created by having x money. 
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Figure: A decision problem 
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A strategy is a function a : Y → A where Y is the codomain of the 
signal, and a(y) defines the chosen action after observing y . 
θ : Ω → Θ is a random variable and y : Θ → Y is the signal. Ω 
gives the entire probability space, Θ is the set of payoff-relevant 
states of the world, but the agent does not observe θ directly so 
must condition on y instead. 
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How does the agent do this? He knows the joint distribution 
p(y , θ) of y and θ. In particular he has a prior belief about the y
state of the world, p(θ) = y p(y , θ). And he can calculate
 
likelihoods p(y |θ) by Bayes’ rule, p(y , θ) = p(θ)p(y |θ).
 
As stated, the random variables with their joint distribution are the 
primitives and we back out the likelihoods. But since the 
experiment is fully described by these likelihoods, it can be 
cleaner to take them as the primitives. 
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In deciding what action to take, the agent will need the reverse 
likelihoods p(θ|y) = p(y ,θ) . These are the posterior beliefs, whichp(y) 
tell the agent what states θ are more likely given the realization of 
the experiment y . 
IMPORTANT: every experiment induces a distribution over
 
posteriors.
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By the Law of Total Probability, p(θ) = p(y)p(θ|y): the y 
weighted average of the posterior must equal the prior. In other
 
words, p(θ|·), viewed as a random vector, is a martingale.
 
Can also take posteriors as primitives!
 
Every collection of posteriors {p(θ|y)}y∈Y that is consistent with
  
the priors and signal probabilities (i.e., p0(θ) = p(θ|y)p(y))y 
corresponds to an experiment. 
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An example: coin toss 
A coin may be biased towards heads (θ1) or tails (θ2) 
p(θ1) = p(θ2) = 0.5 
p(H|θ1) = 0.8, p(T |θ1) = 0.2 
p(H|θ2) = 0.4, p(T |θ2) = 0.6 
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We can then find:
 
p(H) = 0.8 ∗ 0.5 + 0.4 

2
∗ 0.5 = 0.6, p(T ) = 0.4
 

p(θ1|H) = 0.8
p(
∗0.5 = H)	 3




 

1
p(θ1|T ) = 0.2
p(
∗0.5 = T )	 4

Figure: Updating after coin toss (p'(R) = p(θ1|H), p'(L) = p(θ1|T )) 

0 1p = .5p′(L) p′(R)

L R
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Sequential Updating
 

Suppose we have signals y1 and y2 coming from two experiments 
(which may be correlated) 
It does not matter if you update based on experiment A first, then 
update on B or vice-versa; or even if you take the joint results 
(y1, y2) as a single experiment and update on that 
(However, if the first experiment conditions how or whether you do 
the second one, then of course this is no longer true) 
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E.g., suppose that θ is the health of a patient, θ1 = healthy,
θ2 = sick, and y1, y2 = + or − (positive or negative) are the results
of two experiments (e.g. doctor’s exam and blood test)

Figure: Sequential Updating 

0 1p

+ −

+ −+ −
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Lecture 2
 

Note: experiments can be defined independently of prior beliefs 
about θ 

If we take an experiment as a set of posteriors p(y |θ), these can 
be used regardless of p0(θ) 

(But, of course, they will generate a different set of posteriors 
p(θ|y), depending on the priors) 
If you have a blood test for a disease, you can run it regardless of 
the fraction of sick people in the population, and its probability of 
type 1 and type 2 errors will be the same, but you will get different 
beliefs about probability of sickness after a positive (or negative) 
test 
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One type of experiment is where y = θ + E 

In particular, when θ ∼ N(µ, σ2) and E ∼ N(0, σE2), this is very θ 
tractable because the distribution of y , the distribution of y |θ, and 
the distribution of θ|y are all normal 
Useful to define precision of a random variable: Σθ = 

σ
1
2 
θ 

The lower the variance, the higher the precision 
Precision shows up in calculations of posteriors with normal
 
distributions: in this example
 o  

Σθ ΣLθ|y ∼ N Σθ +ΣL 
µ + Σθ +ΣL 

y , Σθ +ΣE . 
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Statistics and Sufficient Statistics
 

A statistic is any (vector-valued) function T mapping y to T (y).
 
Statistics are meant to aggregate information contained in y .
 
Now suppose that p(y |θ) = p(y |T (y))p(T (y)|θ).
 
Then T (y) contains all the relevant information that y gives me to
 
figure out θ. In that case, we say T is a sufficient statistic.
 

p(y |θ)p(θ) p(y |T (y))p(T (y)|θ)p(θ) p(T (y)|θ)p(θ)Formally, p(θ|y) = p(y) = p(y |T (y))p(T (y)) = p(T (y)) = 
p(θ|T (y)). 
Here, we use that p(y) = p(y , T (y)) because T (y) is a function of 
y . 
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This is useful if, e.g., the mean of a vector of estimates is a 
sufficient statistic for θ, then I can forget about the vector and 
simplify the calculations. 
A minimal sufficient statistic is intuitively the simplest/coarsest 
possible. Formally, T (y) is a minimal sufficient statistic if it is 
sufficient and, for any S(y) that is sufficient, there is a function f 
such that T (y) = f (S(y)). 
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Decision Analysis
 

Remember our framework: we want to take an action a to 
maximize u(a, θ), dependent on the state of the world 
We will condition on our information y , given by posteriors p(y |θ) 
Three questions: 

How to find the optimal decision rule? 
What is the value of information? For a particular problem, this is 
given by how much your utility increases from getting the 
information 
Can we say anything about experiments in general? E.g., 
experiment A will always give you weakly higher utility than B, 
regardless of your decision problem 
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We can solve for the optimal decision ex post or ex ante 
Either observe y and then calculate y
a ∗(y) = maxa u(a, θ)p(θ|y)dθ (ex post) 

θ y y
Or build a strategy a ∗(·) = maxa(·) y θ u(a(y), θ)p(y , θ)dθdy before 
seeing y (ex ante) 

In decision theory problems with only one agent, both are
 
equivalent (as long as all y ’s have positive probability)
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Note: given a y , we can think of the ex post problem as a generic 
problem of the form V (p̃) = maxa v(a, p̃) where 
v(a, p̃) = 

y
u(a, θ)p̃(θ)dθ, and p̃(θ) = p(θ|y).θ 

Note: v(a, p) is linear in p. 
Exercise: show that V (p) is convex in p. y
Definition: VY = y V (py )p(y)dy is the maximal utility I can get 
from information system Y (by taking optimal actions). 
Definition: ZY = VY − V (p0) is the value of information system Y 
(over just knowing the prior). 
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Consider an example with states θ1, θ2; actions a1, a2; and signal 
outcomes L, R 

Figure: Value of Information 
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In the graph p = p0(θ1) 

For generic a and p, v(a, p) = pu(a, θ1) + (1 − p)u(a, θ2) 

In the graph u(a1, θ1) > u(a2, θ1) but u(a2, θ2) > u(a1, θ2) (want to 
match action to state) 
Under the prior, a1 is the better action 
With information, we want to choose a(L) = a2, a(R) = a1 

VY is a weighted average of the resulting payoffs 
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This illustrates the maximal gap (between deciding with just the prior 
vs. exactly knowing the state): 

Figure: Value of Perfect Information 

p

Value of 
perfect 

information
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Lecture 3
 

Life lesson: even if two ways of writing a model are mathematically 
equivalent, it may make a huge difference how you think about it 
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Comparison of Experiments
 

Question: given two experiments A, B, when is YA > YB
 

regardless of your decision problem?
 
Answer 1: Iff the distribution of posteriors from YA is a MPS 
(mean-preserving spread) of the distribution of posteriors from YB. 
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In this example with two states and two two-outcome experiments, the
one with more extreme posteriors gives higher utility 

Figure: Mean-preserving spread of posteriors 

(Need not be parallel)

p
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Idea: if YA’s posterior distribution is a MPS of YB ’s, it is as though 
knowing the outcome of experiment A amounts to knowing the 
outcome of B, then being given some extra info (which generates 
the MPS) 
Note: MPS of the signals means less information, but MPS of the 
resulting posteriors means more information! 
Formally, since V is convex, averaging V over a more dispersed 
set gives a higher result (by Jensen’s inequality). 
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Given two experiments which do not bracket each other (neither’s 
posteriors are a MPS of the other’s), we can find decision 
problems for which either one is better 
In the graph, the experiment with outcomes B, G is uninformative 
for our purposes, hence worse than the one with outcomes L, R 

But conclusion is reversed if we change the payoff structure 
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Figure: Unordered experiments 
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Second attempt: use the concept of Blackwell garbling. 
Definition: YB is a garbling of YA if PB = MPA

T , where 
BPB = [pij ]

B , where p = P[yB = i |θ = j],ij 

PA = [pkl ]
A, where pA = P[yA = k |θ = l],kl 

M = [mik ], a Markov matrix (its columns add up to 1). 

The idea: B can be construed as an experiment that takes the 
outcomes of A and then mixes them up probabilistically. This 
makes B less informative (even if it e.g. had more outcomes than 
A). 
Answer 2: YA > YB iff B is a Blackwell garbling of A. 
Corollary: B is a Blackwell garbling of A iff the posterior
 
distribution of A is a MPS of B.
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For two-outcome experiments, easy to show that a garbling has 
posteriors bracketed by those of the the “original” experiment 

Figure: Garbled posteriors 
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