14.124(Solutions for Homework 1)

1 Question1

Definition 1 MLRP: ﬁﬁ 1S INCTreasing in .

Definition 2 FOSD: F (z) < G(z)Vx

Show that MLRP=- FOSD
Proof: M LRP implies that there exists z, such that % = 1. If not then f(z) > g(z)Vx
or f(z) < g(z)Vx. But since [ f(z)dz = [ g(z)dx = 1, neither of these cases are possible.

We have two cases:
Cl: <z f(zx) <glx)— °_flx)< * _g(x) - F(z) < G(x)

C2:x>mo: f(x) >g(x) =  “f(x)> Fgla) = 1—F(z)<1-G(z) — F(z) < G(x)

x

2 Question 2

You want to design an experiment, that is a random variable Y (that takes value in [0;1],
for simplicity, and is characterized by the joint distribution p(6,y) ) such that the
distribution of posteriors generated by this experiment is given by f{p). In the

“experiment” the posterior will be given by Pr(6;/y) and the probability that this posterior
arises is simply Pr(y). In the statement, the probability that posterior p arises would be
given by f(p). Therefore, we’d like to take Pr(8,/y)=p and Pr(y)=f(p) (for y=p) which
directly defines p(0.,y)=pf(p) ;Pr(6sly)=1-p ; p(62y)=(1-p)f(p). Does such a random
variable exists 7

We have p(6,y)>0 for all y,0 and
I p(0.y)dyd6 =l p(6:.y)dy+] p(02.y)dy
=Ipf(p)dp-+(1-p)f(p)dp (by construction, since p(6:,y)=pf(p) for y=p )
=po+ (1-po) =1 (by hypothesis)

Therefore such an experiment exists (we can construct a random variable Y such that
the joint distribution of (Y,0) is p(8,y) since p is non negative and sums up to 1) and
the prior is given by Pr(@,)=] p(6.y)dy =p, as wanted

We can then define the likelihood functions using Bayes rule and we have Pr(y/0;)= Pr(6;/
y)Pr(y)/Pr(0:)=pf(p)/po and similarly for Pr(y/0,). You can then directly verify that the
experiment defined by the outcome y, these likelihood functions and the prior p, generate posteriors

distributed according to f.
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3 Question 3

1. We are given u (a, s) therefore we can derive v (a, p) :

v(a1,p) = pu(ar,s1)+ (1 —p)u(ar,s2) =7+3p

v(ag,p) = pu(ag,s1)+ (1 —p)u(ag,s2) =11 —6p

The upper envelope of v (a,p) will be the V (p) (it indicates the maximum expected utility that

the agent can reach if faced with probability of s; equal to p):

V(p) = max v (a,p)

V(p)
11 ‘
10
I
-
7
5
0.25 0.4 1p
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At p = 0.4 the optimal decision is agy since:

v(a1,p) = 10(0.4)+7(0.6) = 8.2

v(a2,p) = 5(0.4)+11(0.6) =8.6

2. We are given the likelihood matrix:

I_ Pr(yi|s1) Pr(yz|s1) M (1-X\)

Pr(yi|s2) Pr(yals2) A2 (1—2A9)

The probability of observing the two signals is:

Pr(y1) = Pr(yils1)Pr(s1) + Pr(yi1]s2) Pr(s2) = 0.4X\1 + 0.6A2

Pr(y2a) = Pr(ya|s1)Pr(s1) + Pr(ya|s2) Pr(s2) =1 —0.4A; — 0.6\

Let’s calculate the posterior probabilities:

Pr(y1]s1) Pr(s1) 0.4)\
p —~ =
r(s1ly1) Pr (y1) 0.4\ + 0.6)2
Pr(y2|51) PI‘(Sl) 0.4 (1 - >\1)
p —~ =
r(s1ly2) Pr (42) 1— 0.4\ — 0.6);

o If N\ =X = % the information system has no value because the same signal y; is as likely to

appear in the two states of nature. Whenever \; = A9 the information system has no value.

o If \ = % and Ao = 0 the the likelihood matrix is the following:

1 1
=2 2
0 1
Posteriors in this case are:
Pr(31|y1) = 1

Pr(sily2) = 0.25


http:Pr(s1|y2)=0.25

And probabilities of the two signals are:

Pr(y1) = 0.2
Pr(y2) = 0.8
— When observe y;:
v (al, 1) = 10
v(az,1) = 5

therefore the optimal choice as a function of the signal is:
a(y;) = argmaxv (a,p=1) = a3
a

Hence:

V(1) =10

— When observe ys:

v(ay,025) = 7.75

v(ag,0.25) = 9.5

therefore the optimal choice as a function of the signal is:

a (y2) = argmaxv (a,p = 0.25) = ag
a

hence:

V (0.25) = 9.5

We can know calculate Vy as:

Vy = (9.5)0.8 4 (10)0.2 = 9.6



We can now calculate the value of information as:
Z=Vyw-V(04) =96-86=1

3. We know that the Blackwell theorem gives general conditions under which one information system
is preferred to another. So we just have to prove that the information system ()\1 = %oz + % B, Ao = ﬁ)

is a garbling of the information system (A; = 2, Ay = 0).
2

We have to find a Markov matrix M:

mi1 Mmi2
M =
mo1  Ma2
mi;+mg = 1
mo1 +moy = 1
mi; = 0

such that the following relationship between the likelihood matrices holds:

P e | [ 1o
0 1 ma1 M2 B 1-5

You can verify that such matrix M exists and is equal to the following:

a 11—«

B 1-p



4 Question 4
4.1)p)

The(Pareto(problem is(
Hel?u);feu (s2) + (T =fequ (s1) —-ea

subject (to(

IR)(fe (-’L‘2(_'320 + (17_'fe¢)¢ (331(—'S1Q2~0

The(individual (rationality (constraint(for(the(principal (will(bind (otherwise, (can(just(pay (the(agent(more).(
Since(we(only (have(the(Pareto(problem(here,(the(agent(will(get(a(constant(wage (in(effect,(the(principal(is(
like(a(competitive(insurance(company (here) (

51(= 52(= fewa(+ (1 = fedx1
The(effort(level(should(be(chosen(to(solve(

max {u (fuzach (1 —fodan) —e}
Effort(level(e ais(optimal (iff (

u(farot+ (1 =-fudx1) —u (freet (I —fryr1) =>-ema—er

The(second-best (problem (is(the(same, (but(also(adds(an(incentive(constraint: (for (implementing(e i

IC)((fHa—fra (u(s2)—u(s1)) >-ena—er

Then, (it(is(clear(that (a(constant (wage(cannot (implement (e g, (since(it (will (set (the (LHS (to(zero. (Hence, (the(
IC(constraint (will(bind (if(e gois(optimal (to(implement. ( To(implement (e 7, (we (will (have(

(fra—fra(u(s2)=u(s1))” =" ena—er (2)(
fadxo—-s2) + (1 —fud (v1(—s1) = 0°

To(implement (e, ,(we(will(have(a(constant (wage(
s ="froo+ (1 —fryx:

Tt (is(efficient (to (implement (e raiff (

fru(s2) + (1 —fadu (s1) —ema>-u(s) —er,

and (using(2,(

= u(s1) + fu (u(s2) —u(s1))>-u(s) +epa—er

= u(s1) + (ega—erd >-u(s)

fr
fo [



4.2)b)

Suppose(there(is(now (a(third (effort(level (e o> a12( (erot erd with(fare= 3 (( frat frd-(Then,(to(implement (e pzq(
we(need (the(following(incentive(constraints: (

ICH)((fra—fumd (u(s2) —u(s1))” < ema—em
ICL)((faa—frd (u(s2) —u(s1))” > ema—er

Substituting(in(for(fymand(ear,(we(get(

ICH) (S (frrafrd (u(sa = (1)) < & (epaer
ICL)G (S (s2) = (s1)” >a 5 (eraer)

which(cannot (both(hold(simultaneously. ( Therefore, (e yacannot (be(implemented. (
4.3))
Now (suppose (GMa<C% ((e Hat erd and(egawas(optimal (to(implement (in(Part(a). (Hence, (

s1> frrat (1 —frym

where(

u(s) —u(s5) ="k

fo Jr
and((s], s3) denote(the(optimal(contract (in(Part(a).(
Our(constraints(are(now:(

IR)(fud@a(—-s2) + (L —frd (x1(—s1)"
1O)((froa—fra(u (s2) —u (s19))”

IOM)(3 (Frraf1 (w520~ (s10)” > epaen

IV IV

€Ho €L

Since(we(have(that(

& e Fr (s3] —u (55) = (e erd < ermaenr

constraint(ICM) (fails(the(contract(we(derived (in(Part(a) (no(longer (implements(e gaonce(epais(available(
We(can (still implement (e yunder (certain(conditions. (Constraint (ICM) (will(bind, (and (therefore, (constraint
IC) (will(not(bind.( The(sharing(rule(will(satisfy(

Frdwa—s2) + (1 = (r—sn)” = 0
o e frd (s = (1)) = emaens
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