Decision Making under Uncertainty - Experiments and Value of Information

Bengt Holmstrom

14.124, Spring 2003

- So far, we've studied how individuals choose among a given set of lotteries.
- Here we are concerned with choices contingent on information that comes from an "experiment".
- Basic questions:
- What's the optimal contingent decision rule?
- What's the value of information?
- Can information systems/experiments be ranked regardless of utility function?

1 Basic Structure

θ - state of nature
a - (final) action
$u(a, \theta)$ - utility payoff if a chosen and state is θ.
Could come from composition of monetary payoff $x(a, \theta)$ and utility function over money $\widetilde{u}(x)$:

$$
u(a, \theta)=\widetilde{u}(x(a, \theta))
$$

y - information signal/experimental outcome.

Decision Tree:

Figure 1
Example:
y - sales forecast
a - production decision
θ - realized demand
$x(a, \theta)$ - monetary payoff

Note: θ needs to include all payoff relevant events (but nothing more).
One and only one state of nature should "happen" in the end.
One and only one signal y should occur.

Strategy/decision rule: $\{a(y)\}$
What you decide if you observe signal y.

2 Priors and Posteriors

We take a Bayesian view: θ and y are random variables with a joint distribution.

$$
p(y, \theta)
$$

Often, we think of this joint distribution as stemming from two distributions:
i a prior distribution $p(\theta)(=$ marginal distribution of $\theta)$
ii a set of likelihoods $\{p(y \mid \theta)\} \Rightarrow p(y, \theta)=p(\theta) p(y \mid \theta)$

The likelihoods $\{p(y \mid \theta)\}$ describe the full statistical characteristics of the experiment. For purposes of decision making, an experiment is identified with the set of likelihood functions $\{p(y \mid \theta)\}$.

The Law of Total Probability states:

$$
p(y)=\int_{\theta} p(y \mid \theta) p(\theta) d \theta
$$

Example: A medical test with signals \{positive, negative\} for identifying conditions \{healthy, sick\}.

Such tests are described by two numbers, e.g.,

$$
\begin{aligned}
& p \text { (negative | healthy) } \\
& p \text { (positive | sick) }
\end{aligned}
$$

From these we get the other two likelihoods:

$$
\begin{array}{c|l}
p(\text { positive } & \text { healthy })=1-p(\text { negative } \mid \text { healthy }) \\
p(\text { negative } & \text { sick })=1-p(\text { positive } \mid \text { sick })
\end{array}
$$

Bayes rule states:

$$
p(\theta \mid y)=\frac{p(y \mid \theta) p(\theta)}{\int_{\theta} p(y \mid \theta) p(\theta) d \theta}\left[=\frac{p(y, \theta)}{p(y)}\right]
$$

Probabilities $p(\theta \mid y)$ are called posteriors. Given $y, p(\theta \mid y)$ updates beliefs from the initial prior.

Every experiment induces a distribution over posteriors!

For any fixed $\theta, p(\theta \mid \widetilde{y})$ is a random variable driven by the distribution of y 's.
The function of $p(\cdot \mid \widetilde{y})$ is a random vector if there are a finite number of θ - outcomes.
This will be conceptually important.
Example:

$$
\theta=\left\{\theta_{1}, \theta_{2}\right\}
$$

Priors (and posteriors) are single numbers.
Prior: $\quad p=\operatorname{Pr}\left(\theta=\theta_{1}\right) \Rightarrow 1-p=\operatorname{Pr}\left(\theta=\theta_{2}\right)$
Posterior: $\quad p^{\prime}(y)=\operatorname{Pr}\left(\theta=\theta_{1} \mid y\right)$

Suppose $\quad y=L$ or R

$$
\begin{gathered}
p=.5 \\
p\left(\begin{array}{l}
p \\
p(L) \\
p
\end{array} \quad \theta_{1}\right)=.8 \Rightarrow p\left(L \mid \theta_{1}\right)=.2 \\
\Rightarrow p(R)=(.5)(.8+.4)=.6 \\
p(L)=(.5)(.2+.6)=.4 \\
p^{\prime}(R)=\frac{(.8)(.5)}{(.6)}=2 / 3 \\
p^{\prime}(L)=\frac{(.2)(.5)}{(.4)}=1 / 4
\end{gathered}
$$

Note: $\quad E\left(p^{\prime}\right)=2 / 3 \cdot(.6)+1 / 4 \cdot(.4)=.5=p$

Figure 2

By the Law of Total Probability:

$$
E_{y}[p(\theta \mid y)]=p(\theta)
$$

$\Rightarrow p(\theta \mid \cdot)$, viewed as a random vector is a martingale.
Very important feature of the stochastic process taking priors into posteriors.

Sequential Updating.
Suppose y_{1} and y_{2} are outcomes from two separate experiments. We can view $y=\left(y_{1}, y_{2}\right)$ as the outcome of a single experiment and update beliefs about θ based on likelihoods $p(y \mid \theta)$. Or we can update beliefs sequentially: first incorporate the evidence from y_{1} to go from $p(\theta)$ to $p\left(\theta \mid y_{1}\right)$ and then use the evidence from y_{2} to go from $p\left(\theta \mid y_{1}\right)$ to $p\left(\theta \mid y_{1}, y_{2}\right)$.

Both procedures result in same final posterior.
Example:

$$
\begin{aligned}
\theta_{1} & =\text { healthy } \quad y_{i}=+ \text { or }-\quad i=1,2 \\
\theta_{2} & =\operatorname{sick} \\
p & =\operatorname{prob}\left(\theta=\theta_{2}\right)
\end{aligned}
$$

Figure 3

On Sufficient Statistics
In General, y is multi-dimensional. For instance, it may be a collection of facts or a large sample from an experiment (e.g., to test the effectiveness of a drug).

A statistic is any (vector-valued) function $T(y)$. For instance, the mean or average is a statistic. So is variance of a sample, median, etc.

Suppose

$$
\begin{equation*}
p(y \mid \theta)=p(y \mid T(y)) p(T(y) \mid \theta) \tag{1}
\end{equation*}
$$

where the operational assumption is that the conditional probability $p(y \mid T(y))$ does not depend on θ (we can always write $p(y \mid \theta)=p(y \mid T(y), \theta)) P(T(y) \mid \theta)$). When (1) holds we call $T(y)$ a sufficient statistic.

The reason is this. Bayes rule gives

$$
p(\theta \mid y)=\frac{p(y \mid T(y)) p(T(y) \mid \theta) p(\theta)}{\int_{\theta} p(y \mid T(y)) p(T(y) \mid \theta) p(\theta) d \theta}=\frac{p(T(y) \mid \theta) p(\theta)}{\int_{\theta} p(T(y) \mid \theta) p(\theta) d \theta}
$$

\Rightarrow posterior only depends on y through $T(y)$.
That is, for purposes of forming posteriors, it is enough to learn $T(y)$ (rather than all of y). Very often, sample averages are sufficient statistics for the mean of a distribution.

Note: The posterior $\{p(\cdot \mid y)\}$ is a sufficient statistic. Actually, it is a minimal sufficient statistic (the least one needs to know to form posteriors).

The reason sufficient statistics are of interest is that optimal decisions will only depend on posteriors.

3 Decision Analysis

A person can find an optimal decision rule or strategy $a(y)$ in one of two ways: Ex Post:

$$
\max _{a} \int_{\theta} u(a, \theta) p(\theta \mid y) d \theta \rightarrow a^{*}(y)
$$

Ex Ante:

$$
\max _{a(\cdot)} \int_{y} \int_{\theta} u(a(y), \theta) p(y, \theta) d \theta d y \rightarrow a^{*}(\cdot)
$$

Both give the same answer, because ex ante optimality holds if and only if decision $a^{*}(y)$ is optimal ex post for every y.

Note: Ex post program can be written

$$
\begin{aligned}
& \max _{a} \int_{\theta} u(a, \theta) \frac{p(y \mid \theta) p(\theta)}{\int_{\theta} p(y \mid \theta) p(\theta)} d \theta \\
& \sim \max _{a} \int_{\theta} u(a, \theta) p(y \mid \theta) p(\theta) d \theta \\
& v(a, p) \equiv \int u(a, \theta) p(\theta) d \theta
\end{aligned}
$$

v is linear in probabilities regardless of shape of $u(a, \theta)$.

$$
\begin{aligned}
a(y) & =\underset{a}{\arg \max } \quad v(a, p(\cdot \mid y)) \\
V(p) & \equiv \max _{a} \quad v(a, p)
\end{aligned}
$$

V is convex, because it is the upper envelope of linear functions.

$$
V_{I} \equiv \int_{y} V(p(\cdot \mid y)) p(y) d y
$$

This is the maximal expected utility that a person can achieve with information system $Y=\{p(y \mid \theta)\}$.

Value of information system Y :

$$
Z_{Y} \equiv V_{Y}-V\left(p_{0}\right) \quad \text { where } p_{0} \text { is prior. }
$$

Value of Y is the difference between maximal payoff with Y and payoff without Y (i.e., payoff achieved by choosing best action given prior $p(\cdot)$).

Example.

Two states: $\theta_{1} \theta_{2}$
Two signal outcomes: $y=L$ or R
Two actions: a_{1} or a_{2}

$$
p=\operatorname{Pr}\left(\theta_{1}\right) \quad 1-p=\operatorname{Pr}\left(\theta_{2}\right)
$$

Figure 4

$$
\begin{aligned}
v(a, p) & =p u\left(a, \theta_{1}\right)+(1-p) u\left(a, \theta_{2}\right) \\
u\left(a_{1}, \theta_{1}\right) & >u\left(a_{2}, \theta_{1}\right) \\
u\left(a_{2}, \theta_{2}\right) & >u\left(a_{1}, \theta_{2}\right)
\end{aligned}
$$

Based on graph, the best decision without Y is:

$$
a_{1}=\underset{a}{\arg \max } \quad v\left(a, p_{0}\right)
$$

$V(\cdot)$ is the squiggly line that identifies upper envelope.
According to the graph, if L is observed, a_{2} will be optimal decision. If R occurs, a_{1} will be optimal:

$$
\begin{aligned}
a(L) & =a_{2} \\
a(R) & =a_{1}
\end{aligned}
$$

Given this rule and considering the probability of L and R, which can be calculated from Law of Total Probability:

$$
p_{L} \cdot p^{\prime}(L)+\left(1-p_{L}\right) \cdot p^{\prime}(R)=p_{0} \Rightarrow p_{L}=\operatorname{Pr}(L)
$$

we get V_{Y} as the average of the value of $V(\cdot)$ at $p^{\prime}(L)$ and $p^{\prime}(R)$.
Z then is the distance between this average and $V(p)$ evaluated at p_{0}.
Perfect information system:

$$
p^{\prime}(L)=0, \quad p^{\prime}(R)=1
$$

Totally uninformative information system:

$$
p^{\prime}(L)=p^{\prime}(R)=p_{0} \quad \text { (prior) }
$$

Value of perfect information is graphically:

Figure 5

4 Comparison of Information Systems

We will consider only the case with two experimental outcomes:

$$
\begin{aligned}
& y_{A}=L \text { or } R \\
& y_{B}=B \text { or } G
\end{aligned}
$$

Immediate from the graph is that if posteriors from Y_{B} "brackets" posteriors from Y_{A}, then Y_{B} is at least as valuable as Y_{A}.

Figure 6

Note: The distribution of posteriors from Y_{B} is a mean-preserving spread of distribution of posteriors from Y_{A}.

Given convexity of $V(\cdot)$, this explains (Jensens' inequality) why Y_{B} is more valuable than Y_{A} (as can be seen from the graph).

More generally, the information system Y_{B} is (weakly) preferred to Y_{A} by all decisionmakers (i.e., all utility functions $u(a, \theta))$ if and only if posteriors $p\left(\theta \mid y_{B}\right)$ form meanpreserving spread of posteriors $p\left(\theta \mid y_{A}\right)$ for all θ. (Note: This allows both multidimensional θ, a and y.) Mean-preserving spread is better because of Jensen and convexity of $V(\cdot)$.

Going the other way, find utility functions such that in one case Y_{A} is better, in the other case Y_{B} is better.

Illustration:

Figure 7

Here Y_{A} is better than Y_{B}. Flipping payoff functions around gives the opposite conclusion \Rightarrow we cannot universally compare Y_{A} and Y_{B}, except when one distribution of posteriors is a mean-preserving spread of the other.

Garbling

Alternative characterization of information order can be obtained using the notion of garbling.
Y_{A} is a garbling of Y_{B} if

$$
P_{A}=M P_{B}^{T}
$$

where

$$
\begin{array}{lc}
P_{A}=\left[p_{i j}^{A}\right] & p_{i j}^{A}=\operatorname{Pr}\left[y_{A}=i \mid \theta=j\right] \\
P_{B}=\left[p_{k l}^{B}\right] & p_{k l}^{B}=\operatorname{Pr}\left[y_{B}=k \mid \theta=k\right] \\
M=\left[m_{i k}\right] & m_{i k}=" \operatorname{Pr}\left[y_{A}=i \mid y_{B}=k\right] "
\end{array}
$$

M is a Markovian matrix, that is, its columns add up to 1 . (The conditional probability interpretation of $m_{i k}$ is natural, but the garbling definition does not per se rest on that.)

Blackwell: Y_{B} is more informative than (i.e., every decision-maker prefers Y_{B} to Y_{A} (weakly)) if and only if Y_{A} is a garbling of Y_{B}.

Intuitively easy in one direction: Signals y_{A} can be construed as arising out of a two stage process: First, y_{B} signal observed, then independently of θ, but conditional on y_{B}, the signal y_{A} is generated (so y_{A}, given y_{B}, is pure noise).

Garbling \Longleftrightarrow MPS (mean-preserving spread) of Posteriors
Easy to see in two-outcome systems Y_{A}, Y_{B}.

Garbling $\Rightarrow p(L \mid B), p(L \mid G)$ are independent of θ.

$$
\begin{gathered}
p\left(\theta_{1} \mid L\right)=\frac{p\left(L \mid \theta_{1}\right) p\left(\theta_{1}\right)}{p(L)} \\
=\frac{\left[p(L \mid B) p\left(B \mid \theta_{1}\right)+p(L \mid G) p\left(G \mid \theta_{1}\right)\right] p(\theta)}{p(L)} \\
=\frac{p(L \mid B) p(B) p\left(\theta_{1} \mid B\right)}{p(L)}+\frac{p(L \mid G) p(G) p\left(\theta_{1} \mid G\right)}{p(L)} \\
=\alpha p\left(\theta_{1} \mid B\right)+(1-\alpha) p\left(\theta_{1} \mid G\right)
\end{gathered}
$$

$\Rightarrow p\left(\theta_{1} \mid L\right)$ is convex combination of posteriors from Y_{B}.
Similarly true for $p\left(\theta_{1} \mid R\right)$.
\Rightarrow Posteriors of Y_{B} bracket posteriors of Y_{A} when garbling condition holds.

Figure 8

To prove result in other direction, note that given posteriors, we find $p(L), p(R), p(B)$, $p(G)$ from Law of Total Probability, (i.e., jump-probabilities in previous graph fixed by the location of the end points/posteriors).

Can then run argument in reverse to get Markov matrix. (Note again there is no presumption that \widetilde{y}_{A} is the result of a draw conditional on observing y_{B} outcome.)

One implication of Blackwell's Theorem: Randomization is sub-optimal.

MIT OpenCourseWare
https://ocw.mit.edu
14.124 Microeconomic Theory IV

Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

