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Mechanism Design
 

n agents i = 1, . . . , n 

agent i has type θi ∈ Θi which is i ’s private information 
 

θ = (θ1, . . . , θn) ∈ Θ = i Θi 

We denote θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) 

θ = (θi , θ−i ) 
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y ∈ Y is a decision to be taken by the principal P 

E.g.: y = (x , t), where x is the allocation (who gets the good in an 
auction; how much of a public good is built; etc) and t is the 
transfer (how much people pay/are paid) 
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Mechanism
 

A mechanism Γ = {M, y} specifies a message space M and a 
decision rule y(m) 

Each agent sends a message mi (θi ) to P from message space 
Mi , and then P chooses action y(m1, . . . , mn) 

P has commitment power 
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Preferences
 

Agent i has utility ui (y , θ) 

P has utility v(y , θ) 

(Note: i ’s utility can depend on other players’ types, but in some 
examples it will only depend on her own type, ui (y , θi )) 
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Beliefs
 

p(θ) is a common prior belief 

Players have posteriors given their type p(θi |θi ) derived from their 
prior 
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Timing
 

P chooses a mechanism (M, y) and commits to it 

Agents play the “game”, with equilibrium 
m ∗(θ) = (m ∗ 1(θ1), . . . , m ∗(θn)) n

Outcome ỹ(θ) = y(m ∗(θ)) 

1 

2 

3 

For now we will be agnostic about the equilibrium concept used to 
determine m ∗ 
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Questions
 

Which allocations ỹ(θ) can be implemented? (Depending on the 
solution concept) 

Which ỹ(θ) among the implementable ones is optimal for P? 

E.g.: in our screening problem, ỹ = (x(θ), t(θ)) and we could 
implement any non-decreasing schedule x(θ) (but with restrictions 
on t(θ) 
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Two Solution Concepts
 

DSE (Dominant Strategy equilibrium): i has a best strategy 
independently of the other agents’ types (even if I knew their 
types) 

BNE (Bayesian Nash equilibrium) 
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Revelation Principle
 

Proposition 

BNE version: suppose Γ has BNE m∗(θ) with outcome 
ỹ(θ) = y(m ∗(θ)). Then there exists a direct revelation mechanism Γd 

with M = Θ and yd (θ) = ỹ(θ), such that mi
d (θi ) = θi is 

BNE-implementable. 
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In a direct mechanism, P just asks agents to reveal their type, and 
chooses some allocation accordingly 

It is incentive-compatible for agents to tell their true type 

The revelation principle says that decision rule ỹ(θ) is 
implementable with some mechanism (M, y) iff truth-telling is a 
BNE of mechanism (Θ, ỹ) 

This greatly reduces the space of mechanisms we need to study 
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We already saw the revelation principle in our screening problem: 

A solution was initially framed as a payment schedule t(x), which 
would induce some equilibrium production x(θ) by the agent 

But we reframed it as directly choosing (x(θ), t(θ)) for each θ, 
subject to IC and IR conditions 
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Note: P ’s commitment power matters 

If P did not have commitment power it would be hard to get agents 
to reveal θ since it might allow for more deviations ex post by P 

The TSA has rules to punish people detected to have drugs 

In the direct mechanism version, you would always tell the truth, 
and you would not get punished if you had some amount that they 
would not have detected anyway 

But they don’t have the commitment power to do this: if you say 
“yes, I have five grams of cocaine” you will go to jail 
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Proof
 

“If” direction is obvious: if truth telling is a BNE of mechanism 
(Θ, ỹ), then this mechanism implements allocation ỹ(θ) 

“Only if”: start with general (M, y) 

If m ∗ is a BNE, then mi 
∗(θi ) ∈ argmax −i (θ−i ), θ)|θi ]Ei [ui (y(mi ,m ∗ mi 

In particular 

∗ ∗ ∗ ∗Ei [ui (y(mi (θi ),m−i (θ−i ), θ)|θi ] ≥ Ei [ui (y(mi (θ̃i ),m−i (θ−i ), θ)|θi ] 

for any θ̃i : no point in mimicking any other type θ̃i 

Hence Ei [ui (ỹ(θi , θ−i ), θ)|θi ] ≥ Ei [ui (ỹ(θ̃i , θ−i ), θ)|θi ] for all θ̃i 

Then θi ∈ argmax˜ y(θ̃i , θ−i ), θ)|θi ], so truth-telling is an 
θi

Ei [ui (˜


equilibrium of (Θ, ỹ)
 

Bengt Holmstrom (MIT) Lecture Slides - Part 4 February 2, 2016. 14 / 65 



DSE
 

Same theorem holds for the DSE solution concept 

Here, m ∗ is a DSE if 

∗ mi (θi ) ∈ argmaxmi
ui (y(mi , m−i ), θ) 

for any m−i 

Notes: DSE implies BNE 

Revelation principle is a “testing device” 

Commitment is again critical 

More general mechanisms may be useful for unique 
implementation 
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VCG mechanism
 

VCG is a DSE implementation of any decision rule 

The catch: it is not necessarily budget-balanced 

Bengt Holmstrom (MIT) Lecture Slides - Part 4 February 2, 2016. 16 / 65 



y(x , t) allocation 

t = (t1, . . . , tn) transfers 

E.g.: x is a public good, or x = (x1, . . . , xn) is an allocation of 
private goods 

ui (y , θ) = ui (x , θi ) + ti : quasilinear preferences 
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� 

First-best allocation: 

x ∗ (θ) ∈ argmax ui (xi , θi ) ∀ θ 
i 

Question: can x ∗(θ) be implemented? 

Yes 

Counterintuitive: it seems like in real life it is very hard to get 
people to reveal preferences for a public good and build it 
whenever optimal 
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Lecture 10
 

Reminder: we had asked, given these utility functions: 
ui (y , θ) = ui (x , θi ) + ti 
Could we implement x ∗(θ), given by 

x ∗ (θ) ∈ argmax ui (xi , θi ) ∀ θ, 
i 

as a DSE? 

In other words, do there exist {ti (m)} such that it is DSE to
 
announce mi = θi for all i?
 

Yes!
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DSE means that 

θi ∈ argmax [ui (x ∗ (mi ,m−i ), θi ) + ti (mi ,m−i )] ∀θi , m−imi 

Note: DSE requires that declaring your true type is optimal even if 
other people are lying and sending whatever messages m−i 
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By definition of x ∗ ,
 

θi ∈ argmax [ui (x ∗ (mi ,m−i ), θi )+ uj (x ∗ (mi ,m−i ),mj )] ∀θi , m−i
mi
 

#j=i
 

Since sending mi = θi implements the socially optimal x ∗
 

(assuming other players’ types are given by mj )
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VCG Mechanism
 

Idea: we can just set the transfers for player i equal to all the
 
remaining terms!
 

tVCG (mi ,m−i ) = uj (x ∗ (mi ,m−i ),mj ) + hi (m−i )i
 
j #
=i 

Then i ’s incentives are always to implement x ∗(θi ,m−i ), so he has 
a weakly dominant strategy to announce mi = θi 

hi is any function that depends on m−i and hence does not affect 
i ’s incentives 

May be useful if we want transfers to add up to 0 

Bengt Holmstrom (MIT) Lecture Slides - Part 4 February 2, 2016. 22 / 65 



Uniqueness
 

Not only does VCG implement x ∗ 

But it is also essentially the unique mechanism that does this 

Theorem 

If Θi is “smoothly connected” ∀i , then {tVCG } uniquely implements i 
x ∗(θ) (up to “constants” hi (m−i )). 

Smoothly connected means that, for any θi , θ i 
′ ∈ Θi , there is a 

curve c : [0, 1] → Θi s.t. c(0) = θi , c(1) = θi 
′ , c is C2 and u ◦ c is 

C2 
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Example
 

Suppose x = 1 or 0: build or not build 

Building has social cost K (for simplicity K = 0) 

θi is i ’s willingness to pay 

x ∗(θ) = 1 if
 

i θi ≥ K and 0 otherwise 

Then what are the VCG transfers? 

tVCG 
i (m) = 0 if i ’s WTP is not pivotal 

 

tVCG (m) =
=i θj ≤ 0 if i is pivotal for x = 1i j #
 

tVCG (m) = −
=i θj if i is pivotal for x = 0i j #

Idea: i always pays for the externality of his message 
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Our example above is called a pivot scheme 

It implies a particular choice of hi : 

hi (m−i ) = −max ui (x ,mj ) 
x 

j #=i 

In particular this choice of hi guarantees that i ti (mi ,m−i ) ≤ 0 for 
all m (the principal never has to pay money on net) 
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Example 2
 

Second price auction 

n buyers, each i has value θi , submits bid bi (simultaneous bids) 

Highest bid gets the good, highest bidder pays second highest bid 

Check: this is a pivot scheme 
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This seems too easy; what is the catch? 

To get the right decision, the mechanism generates very steep 
incentives 

In reality, this makes it hard to satisfy the IR of all participants, if 
they have any 

If we choose hi as in the pivot scheme, agents may get very 
negative payoffs in some states, so their IR may be violated 
(especially if they know their θi before agreeing to the mechanism, 
in which case they would have a limited liability constraint) 

If we increase transfers to agents so their IRs are satisfied, the 
principal may have to pay a lot in some states 
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Balancing the Budget
 

Suppose the principal does not want to pay or be paid money for 
setting up the mechanism 

In other words, we want i ti (m) = 0 for all m 

When can we do this? 

Let S(θ) = i ui (x ∗(θ), θi ) 

Suppose to begin that we take hi (m−i ) ≡ 0 ∀i ,m−i
 

i t
VCG
 Then i = (n − 1)S(θ): massive deficit 
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i t
VCG Taking hi as in the pivot scheme gives i (m) ≤ 0 (budget 

surplus), but not ≡ 0 

Solution: we can take hi such that i ti (m) = 0 ∀m iff we can write 

n 

S(m) = fi (m−i ) 
i=1 

for some functions fi 
If this is true, we can set hi (m−i ) = −(n − 1)fi (m−i ) 

Then i ti (m) = (n − 1)S(m)− (n − 1) i fi (m−i ) ≡ 0 

This condition is also sufficient: if i ti (m) ≡ 0, then
 
(n − 1)S(m) + i hi (m−i ) ≡ 0, so we can use fi = −n

h
−

i 
1
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How hard is this condition to satisfy? 

In our public good example, S(θ) = i θi or S(θ) = 0 
/j=i θjThis S satisfies the condition: can take fi = − n−1 

Another case where it is satisfied is if you add an agent n + 1 who 
does not care about the outcome, so we can set S(m) = −fn+1 

But it’s hard in general 
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BNE Implementation
 

With BNE implementation, we want to satisfy 

Eθ−i [ui (x ∗ (θ), θi ) + ti (θ)] ≥ Eθ−i [ui (x ∗ (mi , θ−i ), θi ) + ti (mi , θ−i )] 

If we assume types are independent, the RHS can be written as 

ui (mi , θi ) + t i (mi ) 

where ui is expected utility from the allocation and t i is the
 
expected transfer
 

These are not conditioned on θ−i because we are taking 
expectations (and if types are independent, θi is uninformative 
about θ−i ) 
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In this case it is easier to balance the budget because BNE
 
implementation requires fewer constraints on the ti
 
If we choose tVCG then x ∗ is DSE-implementable so in particular it i 
is BNE-implementable, but we can then tweak the transfers further 
without breaking BNE implementation 

Bengt Holmstrom (MIT) Lecture Slides - Part 4 February 2, 2016. 32 / 65 



Lecture 11
 

Reminder: we had covered how to generally implement the
 
optimal allocation with the VCG mechanism
 

Intuition: use transfers so that each i ’s incentives are identical to 
the social planner’s 

Have to pay i for the externality that his decision generates on 
everyone else 

Caveat: this mechanism runs a massive budget deficit 

Can fix it by just lowering all the transfers so the planner runs a 
surplus (e.g. pivot scheme) 

But getting the budget to be always balanced can only be done if 
the surplus function S(θ) satisfies a separability property 
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We then moved on to BNE implementation 

The Bayesian IC condition is now: 

Eθ−i [ui (x ∗ (θ), θi ) + ti (θ)] ≥ Eθ−i [ui (x ∗ (mi , θ−i ), θi ) + ti (mi , θ−i )] 

Assuming independent types, this can be rewritten as 

ui (θi , θi ) + t i (θi ) ≥ ui (mi , θi ) + t i (mi ) 
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Note: BNE implementation has many fewer IC constraints 

With DSE implementation, need constraints ICθi ,mi ,m−i for all θi , 
mi , m−i 

ICθi ,mi ,m−i says that type θi prefers to send a truthful message 
rather than reporting mi , when other players send m−i 

With BNE, i does not know m−i and just cares about the effect of 
his message under the expected m−i 

So only has conditions ICθi ,mi 

This allows us to pick non-VCG transfers and still implement the 
same allocation 
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Budget Balancing with BNE
 

Can we use this new freedom to still implement x ∗ while balancing 
the budget? Yes 

Pick transfers 

tAGV VCG 1 VCG 
(m) = t (mi )− t (mj )i i jN − 1 

j #=i 

Then 
tAGV (m) = 0 ∀mi 

i 

AGV VCG 
From i ’s point of view, t i (mi ) = t i (mi ) + constant, so it 
generates the same incentives as VCG: the extra terms cannot be 
influenced by i ’s message 
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Note: this works for BNE implementation because tAGV gives the i 
right incentive for the expected m−i 

If we wanted DSE implementation, ti would have to make mi = θi 

IC for every m−i possible 

So ti would have to condition on m = (mi , m−i ) jointly 

This would make it impossible to funnel other tj into a function 
hi (m−i ), which is what we are doing now 
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Caveats
 

However, BNE implementation has its own set of problems, so not 
necessarily more realistic than DSE implementation 

This only works under independent types 

Types may well be correlated in reality 

This also requires that the players have common knowledge of the 
distribution of everyone’s type 

DSE implementation does not rely on this 

Finally, mechanisms which BNE implement an allocation may also 
have other equilibria 
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Envelope Theorem
 

We will use the envelope theorem to study implementation in the 
continuous case 

Let θ ∈ [0, 1] state of the world 

X arbitrary choice set 

Agent with utility u(x , θ) 

Maximized utility U(θ) ≡ supx∈X u(x , θ) 

Optimal choice X ∗(θ) = argmaxx∈X u(x , θ) 

x ∗(θ) ∈ X ∗(θ) is a selection 
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Theorem (Envelope Theorem in Integral Form) 

Assume: 

u(x , θ) is differentiable in θ for all x ∈ X 

There is B < ∞ such that |u(x , θ)| ≤ B for all x , θ 

X ∗(θ)  = ∅ for all θ 

Then 
 θ 

U(θ) = U(0) + uθ(x ∗ (θ), θ̃)d θ̃
0 

and 
U ′ (θ) = uθ(x ∗ (θ), θ̃) 

exists for all θ ∈ [0, 1]. 
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Note the statement is completely agnostic about the set X and the
 
behavior of u with respect to x
 

No assumption that X is an interval, or connected, or even made 
up of real numbers 

No assumption that u is differentiable or even continuous with
 
respect to X
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Continuous BNE Implementation
 

Let E (ti (mi , θ−i )) = t i (mi ) 

Let E (ui (x ∗(mi , θ−i ), θi ) = ui (mi , θi ) 

Then 
θi ∂uiUi (θi ) = Ui (0) + (θ̃i , θ̃i )d θ̃i
∂θi0 

In other words, Ui (θi ) is completely pinned down by the allocation 

Hence, any two schemes ti (m), t̂i (m) which implement the
 

allocation must satisfy t i (mi ) = t̂ i (mi ) + constant
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( )

tVCG In other words, E (ti (mi , θ−i )) = E i (mi , θ−i ) + constant 

This means that there is essentially no way to improve on VCG, 
even if you just want BNE implementation 

(Besides the fact that with VCG you can tweak the actual ti , so 
long as you maintain the resulting t i , and this may be useful for 
budget balancing) 

This dashed the hopes of computer scientists that hoped to come 
up with better implementation mechanisms 
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Revenue Equivalence Theorem
 

The Revenue Equivalence Theorem is a consequence of this 
analysis 

It says that, if two mechanisms implement the same allocation, 
and the payoff of each i ’s lowest type is the same under both 
mechanisms, then the expected payoff of every type of every 
player is the same under both mechanisms 

And the mechanism’s designer expected surplus is also the same 

In other words, if both mechanisms have the same x ∗, and the 
same Ui (0) for every i , then they have the same Ui (θi ) for every i , 
θi , and the same expected surplus −E( i ti ) 
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RET Example
 

The RET has important consequences for auctions 

Compare a first and second price auction with symmetric buyers, 
with continuous independent types θi distributed on an interval 

Bids will be different (in first price auction, buyers underbid to
 
increase their profit)
 

But both will end up giving the good to the highest bidder, which is 
the buyer with highest value: same x(θ) 

Lowest type never wins, so payoff 0 in both cases 

RET: both auctions must generate the same expected revenue! 
(both for the auctioneer and for every type of every player) 
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Lecture 11
 

Reminder: we had seen how to BNE-implement the optimal 
allocation x ∗ 

We constructed tAGV , which balanced the budget and i 
BNE-implemented x ∗ 

In particular, tAGV was the same as VCG in expectation, in other i
 
AGV VCG
 

words t (mi ) = t (mi )i i
 

tVCG
 But tAGV (m) = (m)i i 
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Myerson-Satterthwaite Theorem
 

Can we achieve efficient bilateral trade between two agents with 
private information about their values? 

M-S theorem: no! 

How come? 
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Setup
 

2 agents B, S 

One good 

xS + xB = 1: xS = 1 means sell, xS = 0 means don’t sell 

Payoffs: uS = tS − xSθS, uB = xBθB + tB 

θi ∼ Fi independent, with full support 

Assume the supports overlap, so exchanging may or may not be 
efficient 
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Efficiency: xS(θ) = 1 iff θB ≥ θS (the mechanism should result in 
trade whenever it is welfare-improving) 

Ex ante budget balance: E (tS(θ) + tB(θ)) ≤ 0 (the principal does 
not lose money on average) 

(Interim) Individual rationality: EUi (θi ) ≥ 0 under the mechanism, 

Requirements: 
1 

2 

3 

for every i and θi 

M-S: no mechanism can satisfy all requirements 
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Why doesn’t our BNE implementation theory contradict the M-S 
theorem? 

Note that requirements 2 and 3 differ from our usual assumptions 

2 is actually quite weak: in BNE implementation, we can balance 
the budget exactly for every θ; here, we just require expected 
balance (or surplus) 

But 3 is strong and we never had that condition before 

In BNE implementation, we never required that each agent get 
some minimum expected utility 

Here we have a stronger condition: agents must not want to pull 
out after knowing their type 
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M-S Theorem Proof
 

Proof sketch: 

Start with pivot scheme 

This is a VCG mechanism, so implements the efficient allocation 
(xS = 1 iff θB ≥ θS) 

It gives the transfers: ts = 0 iff xS = 0, tS = θB iff xS = 1 

tB = 0 iff xS = 0, tB = −θS iff xS = 1 
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Pivot scheme runs a budget deficit: 
E(tB(θ) + tS(θ)) = E (max(θB − θS, 0)) > 0 

We could change it–how? 

One thing we can do is decrease transfers by a fixed amount: set 
t̃B(θ) = tB(θ)− CB, or ̃tS(θ)− CS for some CB, CS > 0 

This does not affect incentives, but is impossible because of the 
IRs 

Already with the pivot scheme, US(1) = 0 and UB(0) = 0, so 
setting CB > 0 or CS > 0 would violate IR for some types 
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Can we change the transfers in some θ-dependent way? 

Yes–if we just want BNE implementation, we can change the ti in 
any way that preserves t i (mi ) 

However, any change to the ti which preserves t i (mi ) for each mi , 
will also preserve Emi (t i (mi )) = Em(ti (m)) 

Hence such changes will not affect E(tS(θ) + tB(θ))! 

And so any such change cannot fix the expected budget deficit 
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Does that really finish the proof? Yes 

Because we are leveraging another powerful result we already 
know: that any mechanism implementing x ∗ must have the same 
t i as VCG, up to a constant 
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MHT
 

Consider the following related team production problem: 

N agents 

x = f (e1, . . . , en) = e1 + . . . + en is total production (a function of 
agents’ efforts) 

si (x) payment to agent i 

ui = si (x)− ci (ei ) 

Note: no uncertainty or private information 
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Can you satisfy: 
1 

2 

3 

Efficiency 

Nash Equilibrium 

Budget Balance: i si (x) = x for all x 

Answer: no, under some conditions 
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Proof Sketch
 

∂f ∂ciThe efficient allocation satisfies = for all i
∂ei ∂ei 

Nash equilibrium requires that ei solve
 

max {si (f (e1, . . . , en))− ci (ei )}
 
ei
 

∂f ∂ci
So ∂si = 
∂x ∂ei ∂ei 

Using the efficiency condition, we get ∂si = 1 for all i
∂x 
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Here is the contradiction: we must have si 
′ (x ∗) = 1 for all i 

But i si (x) = x for all x requires that i si 
′ (x ∗) = 1 instead 

In other words, I need much stronger incentives than I can provide 
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However, you can solve the contradiction if you allow i si (x) ≤ x 
for all x instead (budget surplus) 

Then you can take si (x) = x − N−1 x ∗ for x up to x ∗, and N 
xsi (x) = N thereafter 

Idea: incentives are weaker for x > x ∗, but that’s fine because we 
are trying to implement a fixed x ∗ (no uncertainty) 

For x < x ∗ I create steep incentives by using a steep punishment 

If anyone screws up, everyone pays for it (team punishment) 

This does not result in low utility for the agents (IR problems) 
because the punishment only happens off the equilibrium path 

But, when types are random, everything can happen on the
 
equilibrium path
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Note: incentive problems can be created by informational
 
externalities even if there isn’t joint production
 

In this example, the production function is additive (no interaction 
between agents) 

But still hard to incentivize simply because the principal doesn’t 
observe individual outputs 
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The Market for Lemons
 

A lemon is a used car that is not very good 

Idea: S owns a used car and wants to sell it 

S knows whether the car is a lemon or a peach, but B can’t tell 
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Suppose v ∼ U[5000, 10000] where v is the value of the car to 
the seller 

B’s value is v +Δ, where Δ = 1000 

So vB ∼ U[6000, 11000], but unlike our previous models, here the 
values are correlated 

Even though supports overlap, trade is always efficient 

But can they trade? 
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Suppose S offers to sell for 7500 

B can infer that, if 7500 is the market price, then sellers with value 
above 7500 would never actually sell (they would rather keep the 
car) 

And sellers with value below 7500 would sell 

So the offer must come from the latter group, which has mean 
value 6250 

Hence E(vB|offer) = 7250 < 7500, and B would not buy 
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What is the equilibrium price? 

It must be v such that p+5000 + 1000 = p, so p = 7000
 2
 

Hence 60% out of the efficient trades do not happen 

In general p = 5000 + 2Δ: the smaller B’s extra value, the lower 
the equilibrium price 

For small Δ, most of the market unravels 
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This market unraveling problem creates incentives for people to 
signal 

The seller may let you take the car to a third party mechanic, or do 
a test drive, or give you a guarantee 

But without such signals, the information problem has big
 
consequences
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