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Question 1 

(a) The program is the following: 

 
minsi pH (i)si; 

i 
s.t. [pH (i) − pL(i)]si ≥ c(H); 

i 

si ≥ 0, for all i. 

The first constraint is the agent’s IC constraint, and the second is the limited liability constraint. 

(b) Let µ and νi be the Lagrange multipliers of the two constraints, respectively. Then the first-order 

conditions can be written as follows: 

pH (i) − pL(i)
1 − µ − νi = 0, for all i. 

pH (i) 

Notice that all multipliers are non-negative and a multiplier is zero only if its corresponding constraint is 

not binding. 

Suppose that µ = 0. Then νi = 1 for all i which implies that si = 0 for all i, which cannot satisfy the 

agent’s IC constraint. Therefore, µ > 0. The strict MLRP implies that (pH (i) − pL(i))µ/pH (i) is strictly 

increasing in i, which further implies that νi is strictly decreasing in i. Therefore, νi > 0 and si = 0 for 

i = 1, 2, ..., n − 1. Finally, sn > 0 since otherwise the agent’s IC constraint cannot be satisfied. 
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Question 2 

(a) Let pNF be the probability that there is no fire, p2e the probability that damage is 2000 when Adam 

exerts effort and p2ne the probability that damage is 2000 when Adam does not exert effort. Let x1, x2 and 

x3 be Adam’s consumption in these three cases. Here is the program: 

maxx1,x2,x3 pNF u(x1) + (1 − pNF )(1 − p2e)u(x2) + (1 − pNF )p2eu(x3) 

s.t. (1 − pNF )(p2ne − p2e)(u(x2) − u(x3)) ≥ c; 

pNF (−x1) + (1 − pNF )(1 − p2e)(−1000 − x2) + (1 − pNF )p2e(−2000 − x3) ≥ −W, 

where W is Adam’s initial wealth. 

(b) If Adam’s IC constraint is not binding, x2 = x3 at optimality and the IC constraint is violated. If 

the company’s IR constraint is not binding, then all x’s are inifite. Therefore, both constriants are binding. 

Let λ > 0 and µ > 0 be Lagrange multipliers of the two constriants. Then the FOCs are 

u'(x1) − µ = 0; 

p2ne − p2e 
u'(x2) + λ − µ = 0;

1 − p2e 

p2ne − p2e 
u '(x3) − λ − µ = 0. 

p2e 

Therefore, u'(x2) < u'(x1) < u'(x3). Since u is strictly concave, u' is strictly decreasing, so x3 < x1 < x2. 

The same ordering is true for the S’s. Here is the intuition: we want to encourage Adam to exert the effort, 

so we need x2 > x3 to give him incentive. On the other hand, we want to insure him against the risk of fire, 

so we want to choose x1 in between. 

(c) Since the damage of 2000 does not occur in reality, we can make Adam’s payoff as low as possible 

in that case. Then we set S1 = S2 and check if the IC constraint is satisfied. If for some reason (such as 
limited liability) the IC constraint is not satisfied, then S1 < S2. 
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Question 3 

(a) The agent maximizes 

ŵ(e, s; α, β) = β + αe − 
r
α2σ2 − 

1
(e + s)2 + s. 

2 2 

For α = 0.3, e = 0 and s = 1. 

(b) In this case, the agent chooses effort α, and the principal maximizes 

(1 − α)e − β = α − u − 
r
α2σ2 − 

1 
α2 ,

2 2 

where u is the agent’s reserved utility. Therefore, the optimal α is 1/(rσ2 + 1) = 1/9. 

2 1(c) In this case, u = maxs s − 1 s = , so 2 2 

r 1 442β = u + α2σ2 − αe + e = . 
2 2 81 
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 Question 4 

(a) If	 e can be contracted on, the principal can write a contract to maximize total surplus,
eliminate risk to the agent, and place the agent exactly at the minimum utility by choosing
e and paying only if that level of e is observed. Note that with a risk averse agent and risk
neutral principal, optimal risk sharing requires the principal to bear all risk and pay the
agent a fixed amount. The principal maximizes

max E[x|e] − s 
e,s 

s.t. u(s) − c(e) ≥ u

The FOCs give 

1 
1 

= 
= 

λu'(s ∗) 
λc'(e ∗) 

∗ )=⇒ u'(e ∗ ) = c'(s 

∗This condition together with the participation constraint gives a unique first-best effort e
 
∗and associated payment s . 

(b) For simplicity, I assume c(e) ≥ 0, ∀e; the problem can be solved without this but it is slightly
more tedious. Define s such that u(s) = min{u, u(s ∗) − u'(s ∗)}; by construction s < s ∗ .
Consider the contract

∗ ∗ s	 if x ∈ [e , e ∗ + 1] 
s(x) =

s otherwise 

When the agent chooses e = e ∗, then the agent’s utility is u; this is the first-best efficient 
solution and satisfies IR by construction. All that remains is to verify IC. 

If the agent chooses e > e ∗, then she increases her disutility of effort and lowers her expected 
payout by placing positive probability on outcomes that pay s < s ∗, therefore she will not 
choose e > e ∗ . When e ≤ e ∗ − 1, the agent’s expected utility is at most u − c(e) ≤ u so the 
agent will not prefer that either. For e = e ∗ − δ, δ ∈ (0, 1), the agent’s expected utility is 

E[UA|e] = E[s(x)|e] − c(e) 

≤ (1 − δ)u(s ∗ ) + δu(s) − (c(e ∗ ) − δc'(e ∗ )) 

= [u(s ∗ ) − c(e ∗ )] − δ[(u(s ∗ ) − u(s) − c'(e ∗ )] 

≤ E[UA|e ∗ ] − δ[u'(s ∗ ) − c'(e ∗ )] 

= E[UA|e ∗ ] 

where the first inequality follows from the convexity of c(e). Thus the agent will not prefer 
e in that region, meaning IC is satisfied and the first-best is achieved. 
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