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Adverse Selection
 

We will solve a procurement problem using a screening
 
mechanism
 

Idea: buyer wants to buy from seller, but doesn’t know seller’s cost 
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Setup
 

Two players, buyer B and seller S 

v(x): value of x units to B 

c(x , θ): cost of producing x by S depending on his type θ 

Payoffs: uB(x , t) = v(x)− t , uS(x , t , θ) = t − c(x , θ), where t is 
payment from B to S 

′ ′′Assumptions: v > 0, v ≤ 0, v(0) = 0 

cxθ < 0 (higher types have lower marginal cost), c(0, θ) = 0 ∀θ, 
cx > 0 (positive MC) 
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B designs t(x), a nonlinear price schedule specifying a payoff for 
each quantity 

Given t(x), under some conditions, a seller of type θ will choose a 
quantity x(θ) such that marginal cost equals marginal payoff from 
one more unit: cx (x(θ), θ) = t ′(x) 

Note: no matter how B designs t(x), lower cost sellers always 
produce more 

Easiest to prove using increasing differences 
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Note: if there are k (finitely many) types, I only need t to specify 
payoffs for k product amounts to implement any outcome 

In equilibrium, given some t , types θ1, . . . , θk choose amounts 
x1, . . . , xk respectively, so we can design t2 that pays t2(xi ) = t(xi ) 
and t2(x) = 0 otherwise: t2 implements the same outcome 

So in the 2 type case, we only need to choose two pairs (x1, t1), 
(x2, t2) such that type 1 wants to choose x1 and 2 chooses x2 

Another of those reformulations that are mathematically
 
equivalent but make the problem more tractable
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Types θ1, θ2: Pr(θ1) = p, Pr(θ2) = 1 − p 

Cost functions c1(x), c2(x) 

B chooses {(x1, t1), (x2, t2)} to solve: 

max p (v(x1)− t1) + (1 − p) (v(x2)− t2) 

s.t. t1 − c1(x1) ≥ t2 − c1(x2) 

t2 − c2(x2) ≥ t1 − c2(x1) 

t1 − c1(x1) ≥ 0 

t2 − c2(x2) ≥ 0 

(IC1) 

(IC2) 

(IR1) 

(IR2) 
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Note: one weird thing about this setup is both types have the
 
same outside option
 

Rarely true in reality 

Note 2: the IC conditions are analogous to requiring tangency in 
the continuous case 

But here “tangency” is not meaningful because there are only 2 
options 

Note 3: there may be solutions where we decide to exclude the 
low type altogether and just offer one pair (x2, t2), but we will come 
back to that later 
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General intuition: in the optimal solution, 1’s IR constraint will bind 
but not his IC, and 2’s IC constraint will bind but not his IR
 

Why?
 

Since 2 has lower cost for any x , if 1’s IR constraint holds, 2’s must 
hold with slack (could at worst produce x1 and make positive profit) 

t2 − c2(x2) ≥ t1 − c2(x1) > t1 − c1(x1) ≥ 0 

Hence 2’s IR never binds 

If 1’s IR did not bind, B could lower both t1 and t2 by the same 
amount and make more money 

Hence 1’s IR binds 
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Since 2 has lower marginal cost and x2 > x1, it can’t be that IC1 
and IC2 both bind 

If IC1 binds, 1 is indifferent between x1 and x2, but then 2 strictly 
prefers x2, hence IC2 does not bind 

If IC2 binds, 2 is indifferent, hence 1 strictly prefers x1, hence IC1 
does not bind 
Whenever IC2 does not bind, B can improve by lowering t2 a little: 

2 still chooses x2 

1 chooses x1 even more strongly and his IR is unaffected 
2’s IR is not violated if change is small enough since it wasn’t 
binding 

Hence in optimal solution IC2 must bind, hence IC1 does not bind 
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So B first chooses a point on 1’s zero-profit curve, i.e., B chooses 
x1 and t1 = c1(x1) 

And then moves up 2’s cost curve up to some point, i.e., B
 
chooses x2 and t2 = t1 − c2(x1) + c2(x2)
 

So how to choose x1, x2? 

x2 can just be picked as first-best! 

Whatever x1 is, changing x2 does not affect 1’s incentives, just 
how much 2 produces and how much B pays 2 

So can just choose x2 such that c2
′ (x2) = v ′(x2) (first-best) 
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What about x1? 

Picking the first-best x1 is not good: the more I increase x1, not 
only do I have to pay 1 more, but also have to pay 2 more at the 
same x2 to satisfy his IC 

For the same reason, x1 higher than FB is also bad, and optimal 
x1 is below FB 

The FOC is: p = c1
′ (x1)− (1 − p)c2

′ (x1) > pc 1
′ (x1) 
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If p < c1
′ (x1)− (1 − p)c2

′ (x1) even for small x1, then may want to 
choose x1 = 0 (price 1 out of the market) 

p does not affect x2, but it affects x1 

The lower p is, the lower x1 is 

Bengt Holmstrom (MIT) Lecture Slides - Part 3 February 2, 2016. 12 / 35 



Main tension in this model is between desire to produce at the 
efficient level (choose x1, x2 equal to FB levels) and B’s desire to 
limit type 2’s rent 

Have to screw over type 1 to reduce type 2’s temptation 

If p is low, lowering x1 has low efficiency cost (low type is unlikely 
anyway) but big rent reduction (B pays less to the likely high type) 

Vice versa for high p 
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How to derive the FOC: the problem is reduced to 

max p (v(x1)− t1) + (1 − p) (v(x2)− t2) 

s.t. t2 − c2(x2) = t1 − c2(x1) 

t1 − c1(x1) = 0 

(IC2) 

(IR1) 

Or equivalently 

max p (v(x1)− c1(x1)) + (1 − p) (v(x2)− c2(x2)− c1(x1) + c2(x1)) 
′ ′ ′ =⇒ p(v ′ (x1)− c1(x1)) + (1 − p)(−c1(x1) + c2(x1)) = 0 

′ (1 − p)(v ′ (x2)− c2(x2)) = 0 
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Lecture 8
 

Reminder: we were solving the screening problem, which we had 
reduced to: 

max p (v(x1)− c1(x1)) + (1 − p) (v(x2)− c2(x2)− c1(x1) + c2(x1)) 

(s.t. x2 ≥ x1) 

But the condition x2 ≥ x1 does not bind so we can ignore it 

We get the FOCs: 

′ ′ ′ p(v ′ (x1)− c1(x1)) + (1 − p)(−c1(x1) + c2(x1)) = 0 
′ (1 − p)(v ′ (x2)− c2(x2)) = 0 
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FB From the second FOC, v ′(x2) = c2
′ (x2), so x2 = x , the first-best 2 

value 

Here “first-best” means the value that maximizes the total surplus 
of the principal and agent 

And also the value that would result from the optimal contract if 
the agent were known to be type 2 

From the first FOC, 

1 − p
′ ′ ′ v ′ (x1)− c1(x1) = (c1(x1)− c2(x1)) > 0, 

p 

so x1 
∗ < xFB 

1 
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Hence the principal designs the menu {(x1, t1), (x2, t2)} so that 
type 1 underproduces in equilibrium 

Again, this is to make it cheaper to prevent type 2’s temptation to 
fake being type 1 

FB FB In particular, x ∗ ∗ =
 x > x > x2 2 1 1 

If p is high, there is less distortion in x1 so x ∗ 1 goes up 

If p is low enough, can go all the way to x1 = 0 (type 1 is shut out 
of the market) 
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Virtual Cost Function
 

An alternative way to think about the problem of choosing x1 

We can define
 

1 − p

c̃(x1) ≡ c1(x1) + Δc(x1)p 

Then the choice of x1 made in the screening mechanism is
 
actually the FB choice, for a hypothetical agent that had this
 
(higher) cost function
 

The cost function captures both the real cost of 1 producing more 
x , and the cost of having to pay type 2 more as a result of 
increasing x1 
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m-state case
 

Suppose I have types θ1, . . . , θm 

Cost functions c1, . . . , cm such that ci 
′(x) > cj 

′(x) for all i < j and 
any x (higher types have lower marginal cost) 

Probabilities p1, . . . , pm adding up to 1 

How to design the mechanism? 
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As before, we need to define at most m points: (t1, x1), . . . , (tm, xm) 

Could be fewer if I want to shut out some types, but not more (can 
just drop options from the contract which no one picks in 
equilibrium anyway) 

Now there are m IR constraints: IR1, . . . , IRm 

How many IC constraints? For each type k , need one IC 
constraint for each i  k , saying k prefers picking (tk , xk ) to (ti , xi )= 

So k(k − 1) IC constraints: ICk1, . . . , ICk(k−1), ICk(k+1), . . . , ICkn 
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Which ones bind? 
We can show (with similar arguments to the 2-state case) that: 

Only IR1 binds (higher types have lower cost so necessarily positive 
profits) 
Only ICk(k−1) binds for each k = 2, . . . , n 

Lowest type who is not priced out is left indifferent about entering 

Each type is indifferent about not mimicking the next type with 
higher cost 

(But strictly does not want to mimic others) 
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This gives the right amount of conditions: given some values of 
x1, . . . , xm, the conditions uniquely pin down t1, . . . , tm 

From IR1, we know t1 = c1(x1): pins down t1 

From IC21, we know that t2 − c2(x2) = t1 − c2(x1): pins down t2 

And so on 

Finding the optimal x1, . . . , xm still requires solving for some FOCs 

(Side note: choosing ti ’s with this algorithm allows us to implement 
any sequence x1, . . . , xm we want, as long as it’s non-decreasing, 
but some are better for the principal than others) 
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∗ FB x = x , but for i < m we will have xm m 
FB ∗ < x
i i 

As before, increasing x for low types forces principal to pay all 
higher types more (by the same amount) 

Hence distortion is worst for the lowest i ’s (highest cost types) 
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Continuous Case
 

Suppose now we have a continuum of types θ ∈ [0, 1] 

θ distributed according to a continuous cdf F , with density f 

(Could deal with atoms in distribution; holes in the support are 
more annoying) 

Suppose cxθ < 0, c(0, θ) = 0 for all θ, and (hence) cθ < 0 

Higher types have lower marginal cost, hence lower cost 
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Now principal solves: 

 1 

max (x(θ)− t(θ)) dF (θ) 
x(·),t(·) 0 

s.t. t(θ)− c(x(θ), θ) ≥ t(θ ′ )− c(x(θ ′ ), θ) ∀ θ, θ ′ (ICθ,θ′ ) 

t(θ)− c(x(θ), θ) ≥ 0 ∀ θ (IRθ) 
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Define Π(θ, θ˜ ) ≡ t(θ̃)− c(x(θ̃), θ)) 

This is the profit θ gets from pretending to be θ̃

Define V (θ) ≡ Π(θ, θ) 

This is type θ’s equilibrium payoff 

Then the IC conditions can be rewritten as V (θ) ≥ Π(θ̃, θ) for all 
θ, θ̃

Bengt Holmstrom (MIT) Lecture Slides - Part 3 February 2, 2016. 26 / 35 



What do our conditions imply about V (θ)? 

Since it’s the value function of an optimization problem, we can 
use the envelope theorem: 

dΠ(θ, θ) ∂Π(θ1, θ2)V ′ (θ) = = |(θ,θ) = −cθ(x(θ), θ) > 0
dθ ∂θ2 
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Note: V (θ) a priori doesn’t have to be differentiable, as it is
 
endogenous: the principal could pick a non-smooth x or t
 

But we know cθ is well-defined by assumption 

There are versions of the envelope theorem for non-differentiable 
functions, which guarantee we can use it without knowing ex ante 
that V is differentiable 

But too complicated for this class, so just assume functions are 
differentiable 
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Now we can integrate V ′(θ): 

V (θ) = Π(0, 0)− 
θ 

0 

˜cθ(x(θ̃), θ)d ̃θ 

Since V (θ) = t(θ)− c(x(θ), θ), 

θ 

t(θ) = Π(0, 0) + c(x(θ), θ)− cθ(x(θ̃), θ̃)d θ̃
0 
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This has a similar flavor to the finite types case: given some x(θ), 
we can pin down t(θ) 

But it is not logically equivalent! 

In the finite case, given x1, . . . , xm, there were many t1, . . . , tm that 
could be paired with them that would implement production x1 for 
θ1, ..., xm for θm 

The uniqueness of the ti followed from making some IR and IC 
conditions bind, to achieve optimality for the principal 

(You could design other ti schedules such that no IR or ICs would 
bind, and which would also implement the same xi ’s, but they 
would give some agent types free money) 
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On the other hand, in the continuous case, the conditions which 
uniquely pin down V (θ) and t(θ) (up to Π(0, 0)) follow exclusively 
from the assumption that picking the schedule x(θ) is optimal (i.e., 
incentive compatible) for the agent 

We have not yet exploited in any way the assumption that we’re 
trying to achieve optimality for the principal! 

The only way optimality for the principal will show up, in terms of 
conditions on t , is that we should set Π(0, 0) = 0 (no free money 
for lowest type) 

But we still have to find the optimal schedule x(θ) 
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The problem 
1 

max (x(θ)− t(θ)) dF (θ) 
x(·),t(·) 0 

now becomes 
  1 θ 

max x(θ)− c(x(θ), θ) + cθ(x(θ̃), θ̃) dF (θ) 
x(·) 0 0 

Subject only to the condition that x(θ) is non-decreasing 
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Changing the order of integration, we can rewrite this as 

1 

max (x(θ)− c̃(x(θ), θ)) f (θ)dθ 
x(·) 0 

where 
1 − F (θ)

c̃(x(θ), θ) ≡ c(x , θ)− cθ(x , θ) f (θ) 
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Deriving with respect to each x(θ), we get the FOC:
 

1 − F (θ)

cx (x , θ)− cxθ(x , θ) = 1 ∀ θ

f (θ) 

This gives us an equation in x(θ) which generally pins down x(θ) 

As before, the solution satisfies that x ∗(θ) < xFB(θ) for θ < 1, and 
FB(1)x ∗(1) = x
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One question left: is the solution x ∗(θ) pinned down by this
 
condition necessarily non-decreasing?
 

Not always! 

It turns out that, when the solution to this system of FOCs is 
non-monotonic, you can find the “real” solution by smoothing out 
the decreasing parts 

Surprisingly, this does not affect the optimal value of x(θ) outside 
of the regions we’re smoothing out 

This is because of the agent’s quasilinear utilities: changing x , 
and t , for some θ affects required payoffs for all θ’s equally, so 
does not affect local incentives 
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