Lecture Slides - Part 3

Bengt Holmstrom

MIT
February 2, 2016.

Adverse Selection

- We will solve a procurement problem using a screening mechanism
- Idea: buyer wants to buy from seller, but doesn't know seller's cost

Setup

- Two players, buyer B and seller S
- $v(x)$: value of x units to B
- $c(x, \theta)$: cost of producing x by S depending on his type θ
- Payoffs: $u_{B}(x, t)=v(x)-t, u_{S}(x, t, \theta)=t-c(x, \theta)$, where t is payment from B to S
- Assumptions: $v^{\prime}>0, v^{\prime \prime} \leq 0, v(0)=0$
- $c_{x \theta}<0$ (higher types have lower marginal cost), $c(0, \theta)=0 \forall \theta$, $c_{X}>0$ (positive MC)
- B designs $t(x)$, a nonlinear price schedule specifying a payoff for each quantity
- Given $t(x)$, under some conditions, a seller of type θ will choose a quantity $x(\theta)$ such that marginal cost equals marginal payoff from one more unit: $c_{x}(x(\theta), \theta)=t^{\prime}(x)$
- Note: no matter how B designs $t(x)$, lower cost sellers always produce more
- Easiest to prove using increasing differences
- Note: if there are k (finitely many) types, I only need t to specify payoffs for k product amounts to implement any outcome
- In equilibrium, given some t, types $\theta_{1}, \ldots, \theta_{k}$ choose amounts x_{1}, \ldots, x_{k} respectively, so we can design t_{2} that pays $t_{2}\left(x_{i}\right)=t\left(x_{i}\right)$ and $t_{2}(x)=0$ otherwise: t_{2} implements the same outcome
- So in the 2 type case, we only need to choose two pairs $\left(x_{1}, t_{1}\right)$, $\left(x_{2}, t_{2}\right)$ such that type 1 wants to choose x_{1} and 2 chooses x_{2}
- Another of those reformulations that are mathematically equivalent but make the problem more tractable
- Types $\theta_{1}, \theta_{2}: \operatorname{Pr}\left(\theta_{1}\right)=p, \operatorname{Pr}\left(\theta_{2}\right)=1-p$
- Cost functions $c_{1}(x), c_{2}(x)$
- B chooses $\left\{\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right\}$ to solve:

$$
\begin{align*}
& \max \\
& \text { s.t. } t_{1}-c_{1}\left(x_{1}\right) \geq t_{2}-c_{1}\left(x_{2}\right) \tag{IC1}\\
& \tag{IC2}\\
& t_{2}-c_{2}\left(x_{2}\right) \geq t_{1}-c_{2}\left(x_{1}\right) \tag{IR1}\\
& \tag{IR2}\\
& t_{1}-c_{1}\left(x_{1}\right) \geq 0 \\
& t_{2}-c_{2}\left(x_{2}\right) \geq 0
\end{align*}
$$

- Note: one weird thing about this setup is both types have the same outside option
- Rarely true in reality
- Note 2: the IC conditions are analogous to requiring tangency in the continuous case
- But here "tangency" is not meaningful because there are only 2 options
- Note 3: there may be solutions where we decide to exclude the low type altogether and just offer one pair $\left(x_{2}, t_{2}\right)$, but we will come back to that later
- General intuition: in the optimal solution, 1's IR constraint will bind but not his IC, and 2's IC constraint will bind but not his IR
- Why?
- Since 2 has lower cost for any x, if 1's IR constraint holds, 2's must hold with slack (could at worst produce x_{1} and make positive profit)
- $t_{2}-c_{2}\left(x_{2}\right) \geq t_{1}-c_{2}\left(x_{1}\right)>t_{1}-c_{1}\left(x_{1}\right) \geq 0$
- Hence 2's IR never binds
- If 1 's IR did not bind, B could lower both t_{1} and t_{2} by the same amount and make more money
- Hence 1's IR binds
- Since 2 has lower marginal cost and $x_{2}>x_{1}$, it can't be that IC1 and IC2 both bind
- If IC1 binds, 1 is indifferent between x_{1} and x_{2}, but then 2 strictly prefers x_{2}, hence IC2 does not bind
- If IC2 binds, 2 is indifferent, hence 1 strictly prefers x_{1}, hence IC1 does not bind
- Whenever IC2 does not bind, B can improve by lowering t_{2} a little:
- 2 still chooses x_{2}
- 1 chooses x_{1} even more strongly and his IR is unaffected
- 2's IR is not violated if change is small enough since it wasn't binding
- Hence in optimal solution IC2 must bind, hence IC1 does not bind
- So B first chooses a point on 1's zero-profit curve, i.e., B chooses x_{1} and $t_{1}=c_{1}\left(x_{1}\right)$
- And then moves up 2's cost curve up to some point, i.e., B chooses x_{2} and $t_{2}=t_{1}-c_{2}\left(x_{1}\right)+c_{2}\left(x_{2}\right)$
- So how to choose x_{1}, x_{2} ?
- x_{2} can just be picked as first-best!
- Whatever x_{1} is, changing x_{2} does not affect 1 's incentives, just how much 2 produces and how much B pays 2
- So can just choose x_{2} such that $c_{2}^{\prime}\left(x_{2}\right)=v^{\prime}\left(x_{2}\right)$ (first-best)
- What about x_{1} ?
- Picking the first-best x_{1} is not good: the more I increase x_{1}, not only do I have to pay 1 more, but also have to pay 2 more at the same x_{2} to satisfy his IC
- For the same reason, x_{1} higher than FB is also bad, and optimal x_{1} is below FB
- The FOC is: $p=c_{1}^{\prime}\left(x_{1}\right)-(1-p) c_{2}^{\prime}\left(x_{1}\right)>p c_{1}^{\prime}\left(x_{1}\right)$
- If $p<c_{1}^{\prime}\left(x_{1}\right)-(1-p) c_{2}^{\prime}\left(x_{1}\right)$ even for small x_{1}, then may want to choose $x_{1}=0$ (price 1 out of the market)
- p does not affect x_{2}, but it affects x_{1}
- The lower p is, the lower x_{1} is
- Main tension in this model is between desire to produce at the efficient level (choose x_{1}, x_{2} equal to FB levels) and B's desire to limit type 2's rent
- Have to screw over type 1 to reduce type 2's temptation
- If p is low, lowering x_{1} has low efficiency cost (low type is unlikely anyway) but big rent reduction (B pays less to the likely high type)
- Vice versa for high p
- How to derive the FOC: the problem is reduced to

$$
\begin{align*}
& \max p\left(v\left(x_{1}\right)-t_{1}\right)+(1-p)\left(v\left(x_{2}\right)-t_{2}\right) \\
& \text { s.t. } t_{2}-c_{2}\left(x_{2}\right)=t_{1}-c_{2}\left(x_{1}\right) \tag{IC2}\\
& t_{1}-c_{1}\left(x_{1}\right)=0 \tag{IR1}
\end{align*}
$$

- Or equivalently

$$
\begin{aligned}
& \max p\left(v\left(x_{1}\right)-c_{1}\left(x_{1}\right)\right)+(1-p)\left(v\left(x_{2}\right)-c_{2}\left(x_{2}\right)-c_{1}\left(x_{1}\right)+c_{2}\left(x_{1}\right)\right) \\
& \Longrightarrow p\left(v^{\prime}\left(x_{1}\right)-c_{1}^{\prime}\left(x_{1}\right)\right)+(1-p)\left(-c_{1}^{\prime}\left(x_{1}\right)+c_{2}^{\prime}\left(x_{1}\right)\right)=0 \\
& \quad(1-p)\left(v^{\prime}\left(x_{2}\right)-c_{2}^{\prime}\left(x_{2}\right)\right)=0
\end{aligned}
$$

Lecture 8

- Reminder: we were solving the screening problem, which we had reduced to:
$\max p\left(v\left(x_{1}\right)-c_{1}\left(x_{1}\right)\right)+(1-p)\left(v\left(x_{2}\right)-c_{2}\left(x_{2}\right)-c_{1}\left(x_{1}\right)+c_{2}\left(x_{1}\right)\right)$

$$
\text { (s.t. } x_{2} \geq x_{1} \text {) }
$$

- But the condition $x_{2} \geq x_{1}$ does not bind so we can ignore it
- We get the FOCs:

$$
\begin{aligned}
& p\left(v^{\prime}\left(x_{1}\right)-c_{1}^{\prime}\left(x_{1}\right)\right)+(1-p)\left(-c_{1}^{\prime}\left(x_{1}\right)+c_{2}^{\prime}\left(x_{1}\right)\right)=0 \\
& (1-p)\left(v^{\prime}\left(x_{2}\right)-c_{2}^{\prime}\left(x_{2}\right)\right)=0
\end{aligned}
$$

- From the second FOC, $v^{\prime}\left(x_{2}\right)=c_{2}^{\prime}\left(x_{2}\right)$, so $x_{2}=x_{2}^{F B}$, the first-best value
- Here "first-best" means the value that maximizes the total surplus of the principal and agent
- And also the value that would result from the optimal contract if the agent were known to be type 2
- From the first FOC,

$$
v^{\prime}\left(x_{1}\right)-c_{1}^{\prime}\left(x_{1}\right)=\frac{1-p}{p}\left(c_{1}^{\prime}\left(x_{1}\right)-c_{2}^{\prime}\left(x_{1}\right)\right)>0
$$

- so $x_{1}^{*}<x_{1}^{F B}$
- Hence the principal designs the menu $\left\{\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right)\right\}$ so that type 1 underproduces in equilibrium
- Again, this is to make it cheaper to prevent type 2's temptation to fake being type 1
- In particular, $x_{2}^{*}=x_{2}^{F B}>x_{1}^{F B}>x_{1}^{*}$
- If p is high, there is less distortion in x_{1} so x_{1}^{*} goes up
- If p is low enough, can go all the way to $x_{1}=0$ (type 1 is shut out of the market)

Virtual Cost Function

- An alternative way to think about the problem of choosing x_{1}
- We can define

$$
\tilde{c}\left(x_{1}\right) \equiv c_{1}\left(x_{1}\right)+\frac{1-p}{p} \Delta c\left(x_{1}\right)
$$

- Then the choice of x_{1} made in the screening mechanism is actually the FB choice, for a hypothetical agent that had this (higher) cost function
- The cost function captures both the real cost of 1 producing more x, and the cost of having to pay type 2 more as a result of increasing x_{1}

m-state case

- Suppose I have types $\theta_{1}, \ldots, \theta_{m}$
- Cost functions c_{1}, \ldots, c_{m} such that $c_{i}^{\prime}(x)>c_{j}^{\prime}(x)$ for all $i<j$ and any x (higher types have lower marginal cost)
- Probabilities p_{1}, \ldots, p_{m} adding up to 1
- How to design the mechanism?
- As before, we need to define at most m points: $\left(t_{1}, x_{1}\right), \ldots,\left(t_{m}, x_{m}\right)$
- Could be fewer if I want to shut out some types, but not more (can just drop options from the contract which no one picks in equilibrium anyway)
- Now there are m IR constraints: $\mathrm{IR}_{1}, \ldots, \mathrm{IR}_{m}$
- How many IC constraints? For each type k, need one IC constraint for each $i \neq k$, saying k prefers picking $\left(t_{k}, x_{k}\right)$ to $\left(t_{i}, x_{i}\right)$
- So $k(k-1)$ IC constraints: $I C_{k 1}, \ldots, I C_{k(k-1)}, I C_{k(k+1)}, \ldots, I C_{k n}$
- Which ones bind?
- We can show (with similar arguments to the 2-state case) that:
- Only IR_{1} binds (higher types have lower cost so necessarily positive profits)
- Only $\mathrm{IC}_{k(k-1)}$ binds for each $k=2, \ldots, n$
- Lowest type who is not priced out is left indifferent about entering
- Each type is indifferent about not mimicking the next type with higher cost
- (But strictly does not want to mimic others)
- This gives the right amount of conditions: given some values of x_{1}, \ldots, x_{m}, the conditions uniquely pin down t_{1}, \ldots, t_{m}
- From IR_{1}, we know $t_{1}=c_{1}\left(x_{1}\right)$: pins down t_{1}
- From IC_{21}, we know that $t_{2}-c_{2}\left(x_{2}\right)=t_{1}-c_{2}\left(x_{1}\right)$: pins down t_{2}
- And so on
- Finding the optimal x_{1}, \ldots, x_{m} still requires solving for some FOCs
- (Side note: choosing t_{i} 's with this algorithm allows us to implement any sequence x_{1}, \ldots, x_{m} we want, as long as it's non-decreasing, but some are better for the principal than others)
- $x_{m}^{*}=x_{m}^{F B}$, but for $i<m$ we will have $x_{i}^{*}<x_{i}^{F B}$
- As before, increasing x for low types forces principal to pay all higher types more (by the same amount)
- Hence distortion is worst for the lowest i's (highest cost types)

Continuous Case

- Suppose now we have a continuum of types $\theta \in[0,1]$
- θ distributed according to a continuous cdf F, with density f
- (Could deal with atoms in distribution; holes in the support are more annoying)
- Suppose $c_{x \theta}<0, c(0, \theta)=0$ for all θ, and (hence) $c_{\theta}<0$
- Higher types have lower marginal cost, hence lower cost

Now principal solves:

$$
\begin{align*}
& \max _{x(\cdot), t(\cdot)} \int_{0}^{1}(x(\theta)-t(\theta)) d F(\theta) \\
& \text { s.t. } t(\theta)-c(x(\theta), \theta) \geq t\left(\theta^{\prime}\right)-c\left(x\left(\theta^{\prime}\right), \theta\right) \forall \theta, \theta^{\prime} \\
& t(\theta)-c(x(\theta), \theta) \geq 0 \quad\left(\mathrm{IC}_{\theta, \theta^{\prime}}\right) \\
&\left(\mathrm{IR}_{\theta}\right)
\end{align*}
$$

- Define $\Pi(\tilde{\theta}, \theta) \equiv t(\tilde{\theta})-c(x(\tilde{\theta}), \theta))$
- This is the profit θ gets from pretending to be $\tilde{\theta}$
- Define $V(\theta) \equiv \Pi(\theta, \theta)$
- This is type θ 's equilibrium payoff
- Then the IC conditions can be rewritten as $V(\theta) \geq \Pi(\tilde{\theta}, \theta)$ for all $\theta, \tilde{\theta}$
- What do our conditions imply about $V(\theta)$?
- Since it's the value function of an optimization problem, we can use the envelope theorem:

$$
V^{\prime}(\theta)=\frac{d \Pi(\theta, \theta)}{d \theta}=\left.\frac{\partial \Pi\left(\theta_{1}, \theta_{2}\right)}{\partial \theta_{2}}\right|_{(\theta, \theta)}=-c_{\theta}(x(\theta), \theta)>0
$$

- Note: $V(\theta)$ a priori doesn't have to be differentiable, as it is endogenous: the principal could pick a non-smooth x or t
- But we know c_{θ} is well-defined by assumption
- There are versions of the envelope theorem for non-differentiable functions, which guarantee we can use it without knowing ex ante that V is differentiable
- But too complicated for this class, so just assume functions are differentiable
- Now we can integrate $V^{\prime}(\theta)$:

$$
V(\theta)=\Pi(0,0)-{ }_{0}^{\theta} c_{\theta}(x(\tilde{\theta}), \tilde{\theta}) d \tilde{\theta}
$$

- Since $V(\theta)=t(\theta)-c(x(\theta), \theta)$,

$$
t(\theta)=\Pi(0,0)+c(x(\theta), \theta)-{ }_{0}^{\theta} c_{\theta}(x(\tilde{\theta}), \tilde{\theta}) d \tilde{\theta}
$$

- This has a similar flavor to the finite types case: given some $x(\theta)$, we can pin down $t(\theta)$
- But it is not logically equivalent!
- In the finite case, given x_{1}, \ldots, x_{m}, there were many t_{1}, \ldots, t_{m} that could be paired with them that would implement production x_{1} for $\theta_{1}, \ldots, x_{m}$ for θ_{m}
- The uniqueness of the t_{i} followed from making some IR and IC conditions bind, to achieve optimality for the principal
- (You could design other t_{i} schedules such that no IR or ICs would bind, and which would also implement the same x_{i} 's, but they would give some agent types free money)
- On the other hand, in the continuous case, the conditions which uniquely pin down $V(\theta)$ and $t(\theta)$ (up to $\Pi(0,0)$) follow exclusively from the assumption that picking the schedule $x(\theta)$ is optimal (i.e., incentive compatible) for the agent
- We have not yet exploited in any way the assumption that we're trying to achieve optimality for the principal!
- The only way optimality for the principal will show up, in terms of conditions on t, is that we should set $\Pi(0,0)=0$ (no free money for lowest type)
- But we still have to find the optimal schedule $x(\theta)$
- The problem

$$
{ }_{0}^{1}(x(\theta)-t(\theta)) d F(\theta)
$$

- now becomes

$$
\max _{x(\cdot)} \int_{0}^{1}\left(x(\theta)-c(x(\theta), \theta)+{ }_{0}^{\theta} c_{\theta}(x(\tilde{\theta}), \tilde{\theta})\right) d F(\theta)
$$

- Subject only to the condition that $x(\theta)$ is non-decreasing
- Changing the order of integration, we can rewrite this as

$$
{ }^{1}(x(\theta)-\tilde{c}(x(\theta), \theta)) f(\theta) d \theta
$$

- where

$$
\tilde{c}(x(\theta), \theta) \equiv c(x, \theta)-c_{\theta}(x, \theta) \frac{1-F(\theta)}{f(\theta)}
$$

- Deriving with respect to each $x(\theta)$, we get the FOC:

$$
c_{x}(x, \theta)-c_{x \theta}(x, \theta) \frac{1-F(\theta)}{f(\theta)}=1 \quad \forall \theta
$$

- This gives us an equation in $x(\theta)$ which generally pins down $x(\theta)$
- As before, the solution satisfies that $x^{*}(\theta)<x^{F B}(\theta)$ for $\theta<1$, and $x^{*}(1)=x^{F B}(1)$
- One question left: is the solution $x^{*}(\theta)$ pinned down by this condition necessarily non-decreasing?
- Not always!
- It turns out that, when the solution to this system of FOCs is non-monotonic, you can find the "real" solution by smoothing out the decreasing parts
- Surprisingly, this does not affect the optimal value of $x(\theta)$ outside of the regions we're smoothing out
- This is because of the agent's quasilinear utilities: changing x, and t, for some θ affects required payoffs for all θ 's equally, so does not affect local incentives

MIT OpenCourseWare
https://ocw.mit.edu
14.124 Microeconomic Theory IV

Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

