14.124 Problem Set 4

Question 1

(a) Let t_{i} be the total tax payment by the monopoly of type i. The program is as follows:

$$
\begin{aligned}
\max _{t_{i}, x_{i}} & \sum_{i} p_{i} t_{i} \\
\text { s.t. } & x_{i}-c_{i} x_{i}-t_{i} \geq 0, \text { for all } i \\
& x_{i}-c_{i} x_{i}-t_{i} \geq x_{j}-c_{i} x_{j}-t_{j}, \text { for all } i, j
\end{aligned}
$$

(b) The firm's profit has strictly decreasing differences in c and x, so any implemntable x_{i} must be weakly decreasing in i. To see this, simply add up the IC constraints that types i and j do not immitate each other, and the t_{i} and t_{j} cancel out and we obtain that

$$
-c_{j} x_{j}-c_{i} x_{i} \geq-c_{j} x_{i}-c_{i} x_{j} .
$$

It can be rewritten as $\left(c_{i}-c_{j}\right)\left(x_{i}-x_{j}\right) \leq 0$. Therefore, if $i>j$ (so that $c_{i}>c_{j}$), then $x_{i} \leq x_{j}$.
(c) Since the firm's profit is decreasing in i, the IR constraint is only binding for type n, which means that $t_{n}=\left(1-c_{n}\right) x_{n}$. At optimality type i is indifferent between reporting i and reporting $(i+1)$, so $t_{i}-t_{i+1}=\left(1-c_{i}\right) x_{i}-\left(1-c_{i}\right) x_{i+1}$. (Convince yourself this fact if you did not come to recitation.) Therefore,

$$
\begin{equation*}
t_{i}=\left(1-c_{i}\right) x_{i}-\sum_{j=i+1}^{n}\left(c_{j}-c_{j-1}\right) x_{j} . \tag{1}
\end{equation*}
$$

The summation is type i 's profit. Therefore, the regulator's maximum payoff under a production plan (x_{i}) is

$$
\sum_{i} p_{i}\left[\left(1-c_{i}\right) x_{i}-\sum_{j=i+1}^{n}\left(c_{j}-c_{j-1}\right) x_{j}\right]=\sum_{i}\left[p_{i}\left(1-c_{i}\right)-\sum_{k=1}^{i-1} p_{k}\left(c_{i}-c_{i-1}\right)\right] x_{i}
$$

The constraint is that $0 \leq x_{n} \leq x_{n-1} \leq \ldots \leq x_{1} \leq 1$. Since the objective function is linear in x_{i}, each x_{i} reaches its upper bound (x_{i-1} if $i>1$ or 1 if $i=1$) or lower bound (x_{i+1} if $i<n$ and 0 if $i=n$). Therefore, there exists a k such that $x_{i}=1$ when $i \geq k$ and $x_{i}=1$ if $i>k$. By Eq. (1), $t_{i}=0$ for $i>k$ and for $i \leq k$,

$$
t_{i}=1-c_{i}-\sum_{j=i+1}^{k}\left(c_{j}-c_{j-1}\right)=1-c_{k}
$$

Question 2

Notice that $c(q, \beta)$ has strictly increasing differences in q and β, so every non-increasing $q(\beta)$ can be implemented. Indeed $q(\beta)=1 / \beta^{2}$ is decreasing in β. The envelope theorem implies that the transfer schedule $t(\beta)$ that implements $q(\beta)$ is unique, and is given by

$$
t(\beta)=c(q(\beta), \beta)+\pi\left(\beta_{0}\right)-\int_{\beta_{0}}^{\beta} c_{2}(q(\tilde{\beta}), \tilde{\beta}) d \tilde{\beta}
$$

where β_{0} is a type, $\pi\left(\beta_{0}\right)$ is a constant, and c_{2} is the partial derivative of c with respect to its second argument. Substituting in $q(\beta)=1 / \beta^{2}$, we obtain that

$$
t(\beta)=\frac{1}{\beta}+\pi\left(\beta_{0}\right)-\int_{\beta_{0}}^{\beta} \frac{1}{\tilde{\beta}^{2}} d \tilde{\beta}=\frac{2}{\beta}+\pi\left(\beta_{0}\right)-\frac{1}{\beta_{0}}
$$

Let $A=\pi\left(\beta_{0}\right)-\frac{1}{\beta_{0}}$. Notice that $\beta=q^{-1 / 2}$, so

$$
p(q)=t\left(q^{-1 / 2}\right)=2 \sqrt{q}+A
$$

Question 3

(a) Since utilities are transferable, the efficient trading rule maximizes the total surplus $(v-c) x$, which means that $x=1$ if and only if $v \geq c$.
(b) Let $x\left(m_{S}, m_{B}\right)$ be the trading rule, and $t_{S}\left(m_{S}, m_{B}\right)$ and $t_{B}\left(m_{S}, m_{B}\right)$ be the transfer rule. Then in a direct mechanism that implements efficient trade, $x\left(m_{S}, m_{B}\right)=1$ if $m_{B} \geq m_{S}$ and 0 otherwise. The seller's payoff under this mechanism is

$$
t_{S}\left(m_{S}, m_{B}\right)-c x\left(m_{S}, m_{B}\right)
$$

It is required that $m_{S}=c$ is optimal for all m_{B}. Since the seller can choose the m_{S} that maximizes $t_{S}\left(m_{S}, m_{B}\right)$ under the same physical allocation $x\left(m_{S}, m_{B}\right)$, there exist two functions $t_{S 1}\left(m_{B}\right)$ and $t_{S 0}\left(m_{B}\right)$ such that $t_{S}\left(m_{S}, m_{B}\right)=t_{S, x\left(m_{S}, m_{B}\right)}\left(m_{B}\right)$. In other words, the payment that the seller receives only depends on the buyer's message and whether trade occurs. IC constraints imply that

$$
\begin{aligned}
t_{S 1}\left(m_{B}\right)-c & \geq t_{S 0}\left(m_{B}\right), \text { if } m_{B} \geq c \\
t_{S 0}\left(m_{B}\right) & \geq t_{S 1}\left(m_{B}\right)-c, \text { if } m_{B}<c
\end{aligned}
$$

Therefore, $t_{S 1}\left(m_{B}\right)-t_{S 0}\left(m_{B}\right)=m_{B}$. Similarly, there exists a function $t_{B 0}$ such that $t_{B}\left(m_{S}, m_{B}\right)=t_{B 0}\left(m_{S}\right)$ when $m_{S}>m_{B}$ and $t_{B}\left(m_{S}, m_{B}\right)=t_{B 0}\left(m_{S}\right)+m_{S}$ when $m_{S} \leq m_{B}$.
(c) This is obvious from the previous part as the requirement forces both $t_{S 0}$ and $t_{B 0}$ to be zero.
(d) Notice that $t_{B}\left(m_{S}, m_{B}\right)-t_{S}\left(m_{S}, m_{B}\right)=\min \left\{m_{S}-m_{B}, 0\right\}$, so the budget breaks whenever $c<v$.

Question 4

(a) Under this mechanism, a buyer's payoff is $\left(v_{b}-p\right) m_{b}\left(\hat{v}_{b}\right)$ if she reports value \hat{v}_{b}. Clearly reporting the true v_{b} is optimal. Since the buyer's payoff is always non-negative, she always participates. Similarly, the IC and IR constraints are satisfied for the seller.
(b) The total transfer from the mechanism designer is $-\left[1-F_{b}(p)\right] p+F_{s}(p) p=\left[F_{s}(p)+F_{b}(p)-1\right] p$. Now $F_{s}(p)+F_{b}(p)=0$ when $p=-\infty$ and $F_{s}(p)+F_{b}(p)=2$ when $p=\infty$, so there exists a p^{*} such that

$$
F_{s}\left(p^{*}\right)+F_{b}\left(p^{*}\right)=1,
$$

which means that the budget is balanced when the price is p^{*}. The above condition also means that the mass of sellers who trade $\left(F_{s}\left(p^{*}\right)\right)$ and the mass of buyers who trade $\left(1-F_{b}\left(p^{*}\right)\right)$ are equal, so the mechanism is feasible.

The efficient trade scheme must satisfy five conditions:

- It is feasible: the mass of buyers who trade equals the mass of sellers who trade;
- If a seller of value v_{s} trades, all sellers of lower values trade;
- If a buyer of value v_{b} trades, all buyers of higher values trade;
- If a buyer with value v_{b} trades and a seller with value v_{s} trades, then $v_{b} \geq v_{s}$;
- If a buyer with value v_{b} does not trade and a seller with value v_{s} does not trade, then $v_{b} \leq v_{s}$.

The second and the third requirements mean that the efficient scheme is characterized by two thresholds \bar{v}_{s} and v_{b} such that a seller trades if and only if his value is below \bar{v}_{s} and a buyer trades if and only if her value is higher than v_{b}. The fourth and fifth requirements mean that $\bar{v}_{s}=v_{b}$. The first requirement implies that $1-F_{b}\left(v_{b}\right)=F_{s}\left(\bar{v}_{s}\right)$. Clearly, this condition means that $\bar{v}_{s}=v_{b}=p^{*}$.
(c) This mechanism will not be feasible (i.e. sometimes a buyer wants to buy but the seller does not want to sell or the other way around) when there is only one buyer and only one seller.

MIT OpenCourseWare
https://ocw.mit.edu
14.124 Microeconomic Theory IV

Spring 2017

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

