## Supermodularity

14. 126 Game TheoryMuhamet YildizBased on Lectures by Paul Milgrom

## Road Map

- Definitions: lattices, set orders, supermodularity...
- Optimization problems
- Games with Strategic Complements
  - Dominance and equilibrium
  - Comparative statics

## Two Aspects of Complements

#### Constraints

- Activities are complementary if doing one enables doing the other...
- ...or at least doesn't prevent doing the other.
  - This condition is described by sets that are <u>sublattices</u>.
- Payoffs
  - Activities are complementary if doing one makes it weakly more profitable to do the other...
    - This is described by <u>supermodular</u> payoffs.
  - ...or at least doesn't change the other from being profitable to being unprofitable
    - This is described by payoffs satisfying a single crossing condition.

#### Example – Diamond search model

- A continuum of players
- Each *i* puts effort *a<sub>i</sub>*, costing *a<sub>i</sub>*<sup>2</sup>/2;
- Pr *i* finds a match =  $a_i g(\underline{a})$ ,
  - □ <u>a</u> is average effort of others
- The payoff from match is  $\theta$ .  $U_i(a) = \theta a_i g(\underline{a}) - a_i^2/2$
- Strategic complementarity: BR $(a_{-i}) = \theta g(\underline{a})$



#### Lattices

- Given a <u>partially ordered set</u>  $(X, \ge)$ , define
  - The join  $x \lor y = \inf \{z \in X \mid z \ge x, z \ge y\}$ .
  - $\Box \quad \text{The meet } x \land y = \sup \{z \in X \mid z \le x, z \le y\}.$
- $(X,\geq)$  is a *lattice* if it is closed under meet and join:

 $(\forall x, y \in X) x \land y \in X, x \lor y \in X$ 

• Example:  $X = \mathbf{R}^{N}$ 

 $x \ge y \text{ if } x_i \ge y_i, i = 1,...,N$  $(x \land y)_i = \min(x_i, y_i); i = 1,...,N$  $(x \lor y)_i = \max(x_i, y_i); i = 1,...,N$ 

X=2<sup>s</sup> with order given by inclusion; join=union, meet=intersection

## Supermodularity

- (X,≥) is a <u>complete lattice</u> if for every non-empty subset S, a greatest lower bound inf(S) and a least upper bound sup(S) exist in X.
- A function  $f: X \rightarrow \mathbf{R}$  is <u>supermodular</u> if

 $(\forall x, y \in X)f(x) + f(y) \le f(x \land y) + f(x \lor y)$ 

- A function f is <u>submodular</u> if -f is supermodular.
- If  $X = \mathbf{R}$ , then any *f* is supermodular.

### Complementarity

- Complementarity/supermodularity has equivalent characterizations:
  - Higher marginal returns

 $f(x \lor y) - f(x) \ge f(y) - f(x \land y)$ 

 For smooth objectives, non-negative mixed second derivatives:

 $\frac{\partial^2 f}{\partial x_i \partial x_j} \ge 0 \text{ for } i \neq j$ 



#### Set order

- Given two subsets S,T⊂X, S is <u>as high as</u> T, written S≥T, means
   [x∈S & y∈T] ⇒ [x ∨ y ∈ S & x ∧ y ∈ T]
- A function x\* is <u>isotone</u> (or <u>weakly increasing</u>) if  $t \ge t' \Rightarrow x^*(t) \ge x^*(t')$
- A set S is a <u>sublattice</u> if S≥S.

#### Sublattices of $\mathbb{R}^2$



#### Not Sublattices





#### Increasing differences

- Let f: R<sup>N</sup>→R. f is pairwise supermodular (or has increasing differences) iff
  - □ for all n≠m and x<sub>-nm</sub>, the restriction f (.,.,x<sub>-nm</sub>):R<sup>2</sup>→R is supermodular.

Lemma: If f has increasing differences and  $x_i \ge y_i$  for each j, then

$$f(x_i, x_{-i}) - f(y_i, x_{-i}) \ge f(x_i, y_{-i}) - f(y_i, y_{-i}).$$

Proof:

$$f(x_{1}, x_{-1}) - f(x_{1}, y_{-1})$$

$$= \sum_{j>1} f(x_{1}, x_{2}, \dots, x_{j}, y_{j+1}, \dots, y_{n}) - f(x_{1}, x_{2}, \dots, x_{j-1}, y_{j}, \dots, y_{n})$$

$$\geq \sum_{j>1} f(y_{1}, x_{2}, \dots, x_{j}, y_{j+1}, \dots, y_{n}) - f(y_{1}, x_{2}, \dots, x_{j-1}, y_{j}, \dots, y_{n})$$

$$= f(y_{1}, x_{-1}) - f(y_{1}, y_{-1})$$

#### Pairwise Supermodular = Supermodular

- <u>Theorem</u> (Topkis). Let  $f: \mathbb{R}^N \rightarrow \mathbb{R}$ . Then, f is supermodular if and only if f is pairwise supermodular.
- Proof:
- $\Rightarrow$  by definition.
- ⇐ Given x,y,

$$\begin{aligned} f(x \lor y) - f(y) \\ &= \sum_{i} f(x_{1} \lor y_{1}, \dots, x_{i} \lor y_{i}, y_{i+1}, \dots, y_{n}) - f(x_{1} \lor y_{1}, \dots, x_{i-1} \lor y_{i-1}, y_{i}, \dots, y_{n}) \\ &= \sum_{i} f(x_{1} \lor y_{1}, \dots, x_{i-1} \lor y_{i-1}, x_{i}, y_{i+1}, \dots, y_{n}) - f(x_{1} \lor y_{1}, \dots, x_{i-1} \lor y_{i-1}, x_{i} \land y_{i}, y_{i+1}, \dots, y_{n}) \\ &\geq \sum_{i} f(x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1} \land y_{i+1}, \dots, x_{n} \land y_{n}) - f(x_{1}, \dots, x_{i-1}, x_{i} \land y_{i}, x_{i+1} \land y_{i+1}, \dots, x_{n} \land y_{n}) \\ &= f(x) - f(x \land y) \end{aligned}$$

Supermodularity in product spaces

• Let  $X = X_1 \times X_2 \times \ldots \times X_n$ ,  $f : X \to \mathbb{R}$ .

Then, f is supermodular iff

- **\Box** For each *i*, the restriction of *f* to  $X_i$  is supermodular
- □ *f* has increasing differences.

#### Monotonicity Theorem

• <u>Theorem (Topkis)</u>. Let  $f: X \times \mathbb{R} \rightarrow \mathbb{R}$  be a supermodular function and define

 $x^{*}(t) \equiv \arg\max_{x \in S(t)} f(x,t).$ 

If  $t \ge t'$  and  $S(t) \ge S(t')$ , then  $x^*(t) \ge x^*(t')$ .

- <u>Corollary</u>. Let  $f: X \times \mathbb{R} \rightarrow \mathbb{R}$  be a supermodular function and suppose S(t) is a sublattice. Then,  $x^*(t)$  is a sublattice.
- <u>Proof of Corollary</u>. Trivially,  $t \ge t$ , so  $S(t) \ge S(t)$  and  $x^*(t) \ge x^*(t)$ .

#### Proof of Monotonicity Theorem

- $[t \ge t', S(t) \ge S(t') \Rightarrow x^*(t) \ge x^*(t'), \text{ where } x^*(t') = \operatorname{argmax}_{x \in S(t)} f(x,t)]$
- Suppose that f is supermodular and that  $x \in x^{*}(t), x' \in x^{*}(t'), t \ge t'$ .
- Then,  $(x \land x') \in S(t'), (x \lor x') \in S(t)$ So,  $f(x,t) \ge f(x \lor x',t)$  and  $f(x',t') \ge f(x \land x',t')$ .
- If either inequality is strict then their sum contradicts supermodularity:

 $f(x,t) + f(x',t') > f(x \land x',t') + f(x \lor x',t).$ 

## Application: Pricing Decisions

A monopolist facing demand D(p,t) produces at unit cost c.

$$p^*(c,t) = \operatorname{argmax}_p (p - c)D(p,t)$$
  
=  $\operatorname{argmax}_p \log(p - c) + \log(D(p,t))$ 

- $p^*(c,t)$  is always isotone in c.
- $p^*(c,t)$  is isotone in t if log(D(p,t)) is supermodular in (p,t),
  - i.e. supermodular in  $(\log(p), t)$ ,
  - □ i.e. increases in *t* make demand less elastic:

 $\frac{\partial \log D(p,t)}{\partial \log(p)}$  nondecreasing in t

## Application: Auction Theory

- A firm's value of winning an item at price p is U(p,t), where t is the firm's type. (Losing is normalized to zero.) A bid of p wins with probability F(p).
- Question: Can we conclude that p(t) is nondecreasing, without knowing F?

 $p_{F}^{*}(t) = \arg\max_{p} U(p,t)F(p)$  $= \arg\max_{p} \log(U(p,t)) + \log(F(p))$ 

• Answer: Yes, if log(U(p,t)) is supermodular.

## Convergence in Lattices

- Consider a complete lattice  $(X, \ge)$ .
- Want to define continuity for  $f: X \rightarrow R$ . Consider a topology on X in which
  - □ For any sequence  $(x_m)_{m>0}$  with  $x_m \ge x_{m+1}$   $\forall m$ ,  $x_m \rightarrow \inf \{ x_m : m > 0 \} = \lim x_m$
  - □ For any sequence  $(x_m)_{m>0}$  with  $x_{m+1} \ge x_m \forall m$ ,
    - $x_m \rightarrow \sup \{ x_m : m > 0 \} = \lim x_m$
- f is continuous if for every monotone  $(x_m)$ ,  $f(\lim x_m) = \lim f(x_m)$ .

# Supermodular Games

Formulation

A supermodular game (N,X,u)

- N players (infinite is okay)
- Strategy sets  $(X_n, \ge_n)$  are complete lattices

$$= \underline{X}_n = \min X_n, \overline{X}_n = \max X_n$$

- Payoff functions  $U_n(x)$  are
  - continuous
  - supermodular in own strategy and has increasing differences with others' strategies

$$(\forall n) (\forall x_n, x'_n \in X_n) (\forall x_{-n} \ge x'_{-n} \in X_{-n})$$
$$U_n(x) + U_n(x') \le U_n(x \land x') + U_n(x \lor x')$$

#### Differentiated Bertrand Oligopoly

Linear/supermodular oligopoly

Demand:  $Q_n(x) = A - ax_n + \sum_{j \neq n} b_j x_j$ Profit:  $U_n(x) = (x_n - c_n)Q_n(x)$  $\frac{\partial U_n}{\partial x_m} = b_m(x_n - c_n)$  which is increasing in  $x_n$ 

### Linear Cournot Duopoly

Inverse demand:  $P(x) = A - x_1 - x_2$   $U_n(x) = x_n P(x) - C_n(x_n)$  $\frac{\partial U_n}{\partial x_m} = -x_n$ 

 Linear Cournot duopoly (but not more general oligopoly) is supermodular if one player's strategy set is given the reverse of its usual order.

### Analysis of Supermodular Games

Extremal best response functions

 $B_n(x) = \max\left(\arg\max_{x'_n \in X_n} U_n(x'_n, x_{-n})\right)$  $b_n(x) = \min\left(\arg\max_{x'_n \in X_n} U_n(x'_n, x_{-n})\right)$ 

By Topkis's Theorem, these are isotone functions.

Lemma:

 $\neg [x_n \ge b_n(\underline{x})] \Rightarrow [x_n \text{ is strictly dominated by } b_n(\underline{x}) \lor x_n]$ 

Proof.

If  $\neg [x_n \ge b_n(\underline{x})]$ , then  $U_n(x_n \lor b_n(\underline{x}), x_{-n}) - U_n(x_n, x_{-n}) \ge U_n(b_n(\underline{x}), \underline{x}_{-n}) - U_n(x_n \land b_n(\underline{x}), \underline{x}_{-n}) > 0$ 

Supermodularity + increasing differences

#### Rationalizability & Equilibrium

• <u>Theorem</u> (Milgrom & Roberts): The smallest rationalizable strategies for the players are given by  $\underline{Z} = \lim_{k \to \infty} b^k (\underline{X})$ 

Similarly the largest rationalizable strategies for the players are given by  $\overline{z} = \lim_{k \to \infty} B^k(\overline{x})$ 

Both are Nash equilibrium profiles.

- Corollary: there exist pure strategy Nash equilibria z
  and <u>z</u> s.t.
  - For each rationalizable  $x, \overline{z} \ge x \ge \underline{z}$ .
  - □ For each Nash equilibrium *x*,  $\overline{z} \ge x \ge \underline{z}$ .

#### Partnership Game

- Two players; employer (E) and worker (W)
- E and W provide K and L, resp.
- Output:  $f(K,L) = K^{\alpha}L^{\beta}$ ,  $0 < \alpha,\beta,\alpha+\beta < 1$ .

Payoffs of E and W:

$$f(K,L)/2 - K, f(K,L)/2 - L.$$



#### Proof

- $b^k(\underline{x})$  is isotone and X is complete, so limit  $\underline{z}$  of  $b^k(\underline{x})$  exists.
- By continuity of payoffs, its limit is a fixed point of b, and hence a Nash equilibrium.
- $x_n \neq \underline{z}_n \Rightarrow x_n \neq b_n^k(\underline{x})$  for some *k*, and hence  $x_n$  is deleted during iterated deletion of dominated strategies.

#### **Comparative Statics**

- <u>Theorem</u>. (Milgrom & Roberts) Consider a family of supermodular games with payoffs parameterized by *t*. Suppose that for all *n*,  $x_{-n}$ ,  $U_n(x_n, x_{-n}; t)$  is supermodular in  $(x_n, t)$ . Then  $\overline{z}(t), z(t)$  are isotone.
- Proof. By Topkis's theorem,  $b_t(x)$  is isotone in t. Hence, if t > t',  $b_t^k(\underline{x}) \ge b_{t'}^k(\underline{x})$

$$\underline{z}(t) = \lim_{k \to \infty} b_t^k(\underline{x}) \ge \lim_{k \to \infty} b_{t'}^k(\underline{x}) \ge \underline{z}(t')$$

and similarly for  $\overline{z}$ .

Example – partnership game

• 
$$f(K,L) = tK^{\alpha}L^{\beta}$$



#### Monotone supermodular games

- G = (N, T, A, u, p)
- $T = T_0 \times T_1 \times \ldots \times T_n (\subseteq \mathsf{R}^M)$
- $A_i$  compact sublattice of  $R^{\kappa}$
- $u_i: A \times T \rightarrow R$ 
  - □  $u_i(a,.)$ :  $T \rightarrow R$  is measurable
  - □  $u_i(.,t)$ :  $A \to R$  is continuous, bounded, supermodular in  $a_i$ , has increasing differences in a and in  $(a_i,t)$
- $p(.|t_i)$  is increasing function of  $t_i$ —in the sense of 1<sup>st</sup>-order stochastic dominance (e.g. p is affiliated).
- Theorem: There exist BNE s\* and s\*\* such that
  - □ For each BNE *s*,  $s^* \ge s \ge s^{**}$ .
  - Both  $s^*$  and  $s^{**}$  are isotone.

MIT OpenCourseWare https://ocw.mit.edu

14.126 Game Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.