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Road Map 
�  Definitions: lattices, set orders, supermodularity… 
�  Optimization problems 
�  Games with Strategic Complements  

�  Dominance and equilibrium 
�  Comparative statics 
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Two Aspects of Complements 

�  Constraints  
�  Activities are complementary if doing one enables doing the 

other… 
�  …or at least doesn’t prevent doing the other. 

�  This condition is described by sets that are sublattices
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. 
�  Payoffs 

�  Activities are complementary if doing one makes it weakly more 
profitable to do the other… 
�  This is described by supermodular payoffs. 

�  …or at least doesn’t change the other from being profitable to 
being unprofitable 
�  This is described by payoffs satisfying a single crossing condition. 



Example –Diamond search model 

�  A continuum of players 
�  Each i puts effort ai, costing 

a 2
i /2;  

�  Pr i finds a match = aig(a
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), 
�   a is average effort of others 

�  The payoff from match is θ. 
Ui(a) = θaig(a) – ai

2/2 
�  Strategic complementarity: 

BR(a-i) = θg(a) 

a 

BR(a-i) 

θg(a) 

θ’ > θ�



Lattices 
�  Given a partially ordered set
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 (X,≥), define 
�   The join  
�   The meet 

�  (X,≥) is a lattice

 x ∨ y = inf z ∈ X | z ≥ x,z ≥ y .{ }
x ∧ y = sup z ∈ X | z ≤ x,z ≤ y .{ }

 if it is closed under meet and join: 

x y X∀ ∈ x y∧( ) X∈ x y∨ X∈, ,

�  Example: X = RN  
x y  if x ,y ii i≥ ≥ 1,...,= N

( )x y mi∧ = n( ,x );y ii i 1=i ,...,N
( )x y ma∨ = x( ,x );y i 1i i = ,...,i N

�  X=2S with order given by inclusion; join=union, meet=intersection 



Supermodularity 

�  (X,≥) is a complete lattice
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 if for every non-empty subset S, a 
greatest lower bound inf(S) and a least upper bound sup(S) 
exist in X.  

�  A function f : X�R is supermodular if 

�  A function f is submodular if –f is supermodular.  
�  If X = R, then any f is supermodular.  

( )∀ ∈ + ≤ ∧ + ∨, ( ) ( ) ( ) ( )x y X f x f y f x y f x y



Complementarity 
�  Complementarity/supermodularity has 

equivalent characterizations:  
�  Higher marginal returns 
 
�  For smooth objectives, non-negative 

mixed second derivatives: 
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y 

x 

x∨y 

x∧y 

∨ − ≥ − ∧( ) ( ) ( ) ( )f x y f x f y f x y

∂
≥ ≠

∂ ∂

2

0 for 
i j

f i j
x x



Set order 
�  Given two subsets S,T⊂X, S is as high as
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 T, written S≥T, means  
[x∈S & y∈T] ⇒ [x ∨ y ∈ S  &  x ∧ y ∈ T] 

�  A function x* is isotone (or weakly increasing) if  
t ≥ t’ ⇒ x*(t) ≥ x*(t’) 

 
�  A set S is a sublattice if S≥S. 



Sublattices of R2 
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Not Sublattices 
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Increasing differences 

�  Let f :RN�R. f is pairwise supermodular (or has increasing 
differences) iff  
�  for all n≠m and x , the restriction f (.,.,x ):R2

-nm -nm �R is 
supermodular. 

�  Lemma: If f has increasing differences and xj ≥ yj for each j, then  
f(xi,x-i) – f(yi,x-i) ≥ f(xi,y-i) – f(yi,y-i). 

�  Proof: 
f (x x f x y  1, −1)− ( 1, −1)
= ∑ j>1

f (x1,x2,...,x j ,y j+1,...,yn )− f (x1,x2,...,x j−1,y j ,...,yn )

≥ ∑ j>1
f (y1,x2,...,x j ,y j+1,...,yn )− f (y1,x2,...,x j−1,y j ,...,yn )

= f (y1,x−1)− f (y1,y−1)
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Pairwise Supermodular = Supermodular 

�  Theorem
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 (Topkis). Let f :RN�R. Then, f is supermodular if and only if 
f is pairwise supermodular. 

�  Proof: 
�  ⇒ by definition. 
�  ⇐ Given x,y,  

f (x ∨ y )− f (y )
= ∑ f x ∨

i
( 1 y1,...,xi ∨ yi ,yi+1,...,yn )− f (x1 ∨ y1,...,xi−1 ∨ yi−1,yi ,...,yn )

= ∑ f (x1 ∨ y1,...,xi−1 ∨ yi−1,xi ,yi+1,...,yn )− f (x1 ∨i
y1,...,xi−1 ∨ yi−1,xi ∧ yi ,yi+1,...,yn )

≥ ∑i
f (x1,...,xi−1,xi ,xi+1 ∧ yi+1,...,xn ∧ yn )− f (x1,...,xi−1,xi ∧ yi ,xi+1 ∧ yi+1,...,xn ∧ yn )

= f (x)− f (x ∧ y )

 



Supermodularity in product spaces 

�  Let X = X1 ×X2 ×… × Xn, f : X → R.  
�  Then, f is supermodular iff  

�  For each i, the restriction of f to Xi is supermodular 
�  f has increasing differences. 
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Monotonicity Theorem 

�  Theorem (
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Topkis). Let f :X×R �R be a supermodular function 
and define 

 If t ≥t’ and S (t ) ≥ S (t’ ), then x*(t ) ≥ x*(t’ ).  
�  Corollary. Let f :X×R �R be a supermodular function and 

suppose S (t) is a sublattice. Then, x* (t ) is a sublattice. 
�  Proof of Corollary

*( )x t ≡ argmax (f ,x ).t
∈x S t( )

. Trivially, t ≥t,  so S (t ) ≥ S (t ) and  x*  (t ) ≥ 
x*(t ).   



Proof of Monotonicity Theorem 
�  [t ≥t’, S (t ) ≥ S (t’ ) ⇒ x*(t ) ≥ x*(t’ ), where x*(t )=argmaxx∈S(t)f(x,t)] 
�    Suppose that f is supermodular

and that x ∈ x *(t),x′ ∈ x *(t′),t ≥ t′.
�    Then, (x ∧ x′) ∈S(t′),(x ∨ x′) ∈S(t)
 So, f (x,t) ≥ f (x ∨ x′,t) and f (x′,t′) ≥ f (x ∧ x′,t′). 
�  If either inequality is strict then their sum contradicts 

supermodularity:  
f x( t, f x) ( t′ ′, ) f x(+ > x t′ ′,∧ f x) (+ x′ t,∨ ).
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Application: Pricing Decisions 
�  A monopolist facing demand D (p,t) produces at unit cost 

c.  
p*(c,t) = argmaxp (p – c)D(p,t) 

        = argmaxp log(p – c) + log(D(p,t)) 

�  p*(c,t ) is always isotone in c.  
� *  p (c,t ) is isotone in t if log(D (p,t)) is supermodular in (p,t), 

�   i.e. supermodular in (log(p),t),  

�  i.e. increases in t make demand less elastic:  
∂logD(p,t)
∂log(p)
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 nondecreasing in t



Application: Auction Theory 

�  A firm’s value of winning an item at price p is U(p,t), 
where t is the firm’s type. (Losing is normalized to 
zero.) A bid of p wins with probability F(p). 

�  Question: Can we conclude that p(t) is 
nondecreasing, without knowing F? 

*
F ( )p t = argmax (U ,p )t (F )p

p

argmaxlog ( ,U p )t log( ) (F )p( )= +
p

�  Answer: Yes, if log(U (p,t)) is supermodular.   
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Convergence in Lattices 

�  Consider a complete lattice (X,≥). 
�  Want to define continuity for f : X → R. 

Consider a topology on X in which 
�  For any sequence (xm)m>0 with xm ≥ xm+1 ∀m,  

xm → inf { xm : m > 0} = lim xm 
�  For any sequence (xm)m>0 with xm+1 ≥ xm ∀m,  

xm → sup { xm : m > 0} = lim xm 
�   f is continuous if for every monotone (xm),  

f(lim xm) = lim f(xm).  
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Supermodular Games 
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Formulation 
A supermodular game (N,X,u) 
�  N players (infinite is okay) 
�  Strategy sets (Xn , ≥n) are complete lattices 

�    
�  Payoff functions Un(x) are 

�  continuous 
�  supermodular in own strategy and has increasing 

differences with others’ strategies 
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= =min , maxn n n nx X x X

∀n( ) ∀xn, ′xn ∈ Xn( ) ∀x
−n ≥ ′x

−n ∈ X
−n( )

Un(x)+Un( ′x ) ≤Un(x ∧ ′x )+Un(x ∨ ′x )



Differentiated Bertrand Oligopoly 
�  Linear/supermodular oligopoly  

( )
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Demand: ( )Q x A= −ax +∑ ≠j n
bn n xj j

Profit: ( )U x x c= −n n (Q )n xn

∂Un (b xm n )cn  w= − hich is increasing in xn∂xm



Linear Cournot Duopoly 
�    

Inverse demand: P(x) = A− x1 − x2

Un(x) = xnP(x) −Cn(xn)
∂Un

∂xm

�  Linear Cournot duopoly (but not more general oligopoly) is 
supermodular if one player’s strategy set is given the reverse of 
its usual order.  
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= −xn



Analysis of Supermodular Games 

�  Extremal best response functions 
 

�  By Topkis’s Theorem, these are isotone functions.  
�  Lemma

23 

:  

�  Proof.  

( )
( )

−′ ∈

−′ ∈

′=

′=

( ) max argmax ( , )

( ) min argmax ( , )

n n

n n

n n n nx X

n n n nx X

B x U x x

b x U x x

[ ](¬ ≥x b )n n x ⇒ xn  is strictly dominated by (b )n x ∨ xn[ ]

If (¬ ≥x b )n n x then[ ], 
Un(xn ∨bn(x),x−n )−Un(xn,x−n ) Un(bn(x),x−n )−Un(xn ∧bn(x),x−n )≥ > 0 

Supermodularity + 
increasing differences 



Rationalizability & Equilibrium 

�  Theorem
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 (Milgrom & Roberts): The smallest 
rationalizable strategies for the players are given by 

 Similarly the largest rationalizable strategies for the 
players are given by  

 
 Both are Nash equilibrium profiles. 

 
�  Corollary: there exist pure strategy Nash equilibria z 

and z s.t. 
�  For each rationalizable x, z ≥ x ≥ z. 
�  For each Nash equilibrium x, z ≥ x ≥ z. 

→∞
= lim ( )k

k
z b x

→∞
= lim ( )k

k
z B x



Partnership Game 
�  Two players; employer (E) and worker (W) 
�  E and W provide K and L, resp.   

α β�  Output: f(K,L) = K L , 0 < α,β,α+β < 1. 
�  Payoffs of E and W:  

f(K,L)/2 – K, f(K,L)/2 – L.  
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Rationalizable 

L 

K 

K* 

L* K L*

K*K*



Proof 
�  bk(x
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) is isotone and X is complete, so  limit z of bk(x) exists.  
�  By continuity of payoffs, its limit is a fixed point of b, and hence a 

Nash equilibrium.  
�  xn ≥ zn ⇒ xn ≥ bn

k(x) for some k, and hence xn is deleted during 
iterated deletion of dominated strategies. 



Comparative Statics 

�  Theorem
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. (Milgrom & Roberts) Consider a family of 
supermodular games with payoffs parameterized by t. 
Suppose that for all n, x-n, Un(xn,x-n;t) is supermodular in (xn,t). 
Then 

�  Proof. By Topkis’s theorem, bt(x) is isotone in t. Hence, if t >t’,  

 
 

 and similarly for   .  

( ), ( ) are isotone.z t z t

′

′
→∞ →∞

≥

′= ≥ ≥

( ) ( )
( ) lim ( ) lim ( ) ( )

k k
t t

k k
t tk k

b x b x

z t b x b x z t

z



Example – partnership game 

�  f(K,L) = tKαLβ, 
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L 

K* 

L* 
t’ > t 



Monotone supermodular games 
�  G = (N,T,A,u,p) 
�  T = T M

0 × T1 × … × Tn (⊆ R ) 
�  A K

i compact sublattice of R  
�  ui : A × T → R 

�  ui(a,.): T → R is measurable 
�  ui(. ,t): A → R is continuous, bounded, supermodular in ai, has 

increasing differences in a and in (ai,t) 
�  p(.|ti) is increasing function of ti—in the sense of 1st-order 

stochastic dominance (e.g. p is affiliated). 
�  Theorem: There exist BNE s* and s** such that 

�  For each BNE s, s* ≥ s ≥ s**. 
�  Both s* and s** are isotone. 
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