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Road Map

Definitions: lattices, set orders, supermodularity...
Optimization problems

Games with Strategic Complements

o Dominance and equilibrium
o Comparative statics



Two Aspects of Complements

Constraints

o Activities are complementary if doing one enables doing the
other...

o ...or at least doesn'’t prevent doing the other.
This condition is described by sets that are sublattices.
Payoffs

o Activities are complementary if doing one makes it weakly more
profitable to do the other...

This is described by supermodular payoffs.

o ...or at least doesn’t change the other from being profitable to
being unprofitable

This is described by payoffs satisfying a single crossing condition.




Example —Diamond search model

A continuum of players

Each i puts effort a;, costing

a?l2;

Pr i finds a match = a,g(a),

o ais average effort of others

The payoff from match is 6.
U{a) = 0ag(a) — afl2

Strategic complementarity:

BR(a.) = 89(a)

- BR(a,)

|Q \ 4



[attices

Given a partially ordered set (X,=), define

o The join va=inf{Z€X|ZZX,ZZy}.

0 The meet XAy=sup{zEX|zsx,2sy}.

(X,=) is a lafttice if it is closed under meet and join:

(Vx,yeX)xryeX,xvyeX

Example: X = RN
xzyifx zy,i=1..,N
(xAy) =min(x,y,);i =1...,N
(xvy) =max(x,y)i=1..,N
X=25 with order given by inclusion; join=union, meet=intersection



Supermodularity

(X,=z) is a complete lattice if for every non-empty subset S, a
greatest lower bound inf(S) and a least upper bound sup(S)
exist in X.

A function f: X=>R is supermodular if

(Vx,y eX)f(x)+f(y)<f(xay)+f(xvy)

A function fis submodular if —f is supermodular.
If X =R, then any fis supermodular.




Complementarity

Complementarity/supermodularity has
equivalent characterizations:

o Higher marginal returns
fixvy)-t(x)zf(y)-f(xay)

o For smooth objectives, non-negative
mixed second derivatives:

o°f
X, 0X;

>0 foris=j

........................ S S
Y oy

........................ ey
xay X




Set order

Given two subsets S,TCX, S is as high as T, written S=T, means
IXES & YyET]=[xvyES & xAyeET]

A function x* is isotone (or weakly increasing) if
t=t = x*(t) = x*(t")

A set S is a sublattice if S=S.




Sublattices of R?
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‘ Not Sublattices
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Increasing differences

Let f:RN>R. fis pairwise supermodular (or has increasing
differences) iff

o for all n=m and x
supermodular.

Lemma: If f has increasing differences and x; 2 y; for each j, then
f(Xi7X-i) - f(yi7x-i) = f(Xi,y-i) - f(yi,y-i)'

the restriction f (.,.,Xx,,,,):R*2>R is

-nMmM?

Proof:
f(XvX-l)_ f(thy—l)

=S X X e Y) = F X Koo XV )
= Ej>1f(y1axz""’xj’yj+l’""yn)_f(yl’XZ’""Xj—l’y/""’y”)
=f(y,x)-f(y,y.)
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Pairwise Supermodular = Supermodular

Theorem (Topkis). Let f:RN->R. Then, fis supermodular if and only if
fis pairwise supermodular.

Proof:
=> by definition.
<= Given x,y,

f(xvy)-f(y)
= E,f(x1 VYo Xi VY i Y it Yo ) = FXGV Vi s X g VY Y V)
= E,f(x1 VY Xig VYo Xps Yistre Yo ) = FX YV Vi s X VY i X A Y Y it Vi)

> E,-f(x1""’xi—1’xi’xi+1 AYivreos Xy AY ) = F(Xpse s Xy X AV Xy A Y gy Xy A Y )
=f(xX)=Ff(xAYy)
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Supermodularity in product spaces

Let X = X, xX, x... x X, f: X —> R.

Then, fis supermodular iff
o For each j, the restriction of fto X; is supermodular
o fhas increasing differences.
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Monotonicity Theorem

Theorem (Topkis). Let f:XxR =R be a supermodular function

and define

x (t) = arg[(résa(?gf(x,t).

If t=t"and S(t) = S(t'), then x(t) = x(t').
Corollary. Let f:XxR >R be a supermodular function and
suppose S(f) is a sublattice. Then, x'(t) is a sublattice.

Proof of Corollary. Trivially, t =t, so S(t)= S(t)and x(t) =
x'(t).
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Proot ot Monotonicity Theorem

[t=t, S(t)=S(t')= x(t) = x(t"), where x(t )=argmax,gqf(x.t)]
Suppose that f is supermodular

and that x € x (t),x' € x (t'),t = 1.
Then, (x A x') € S(t'),(x v x') € S(t)

So, f(x,t)=f(xvx',t)and f(x',t') = f(x A X, 1').

If either inequality is strict then their sum contradicts
supermodaularity:

f(x,6)+f(xX,t)>Ff(x A X, t)+f(xv x,t).
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Application: Pricing Decisions

A monopolist facing demand D (p,t) produces at unit cost
C.

p’(c,t) = argmax, (p — ¢)D(p,t)
= argmax, log(p — c¢) + log(D(p{))

p’(c,t) is always isotone in c.
p(c,t) is isotone in tif log(D (p,t)) is supermodular in (p,t),

o i.e. supermodular in (log(p),1),
o i.e. increases in t make demand less elastic:

dlogD(p,t)
dlog(p)

nondecreasing in ¢
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Application: Auction Theory

A firm’s value of winning an item at price p is U(p,1),
where t is the firm'’s type. (Losing is normalized to
zero.) A bid of p wins with probability F(p).

Question: Can we conclude that p(f) is
nondecreasing, without knowing F?

pe(t) = argmax U(p,t)F(p)
- argm?xlog(U(p,t)) +log(F(p))

Answer: Yes, if log(U(p,t)) is supermodular.
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Convergence in Lattices

Consider a complete lattice (X,=).

Want to define continuity for f: X — R.

Consider a topology on X in which

o For any sequence (X,,)-o With X, = x,.,., Vm,
X, — inf{x,:m>0}=1Iimx,,

o For any sequence (X,,),-o With X, = X, Vm,
X, — sup {x,,:m>0}=Iimx,

fis continuous if for every monotone (x,),

f(lim x_) = lim f(x,).
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Supermodular Games




Formulation
A supermodular game (N, X,u)
N players (infinite is okay)
Strategy sets (X, , =,) are complete lattices
o x,=minX_,x, =max X,
Payoff functions U, (x) are
o continuous

o supermodular in own strategy and has increasing
differences with others’ strategies

(Vn)(Vx,.x, €X,)(Vx, =X €X_)
U (x)+U (X)=U (xax)+U (xvXx)
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Ditfferentiated Bertrand Oligopoly

Linear/supermodular oligopoly

Demand: Q, (x)=A-ax, + i bix,
Profit: U,(x) =(x, -¢,)Q,(x)
U,

v b,,(x, —c,) which is increasing in x,
X

m
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Linear Cournot Duopoly

Inverse demand: P(x)=A-x, - X,
U (x)=x P(x)-C (x)

ou_
X

=-X

n

Linear Cournot duopoly (but not more general oligopoly) is
supermodular if one player’s strategy set is given the reverse of
its usual order.
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Analysis of Supermodular Games

Extremal best response functions

B, (x) = max(arg max U.(x,x_)
X, EX,

b (x)= mln(argmaxU (x,x ))
o By Topkis’s Theorem, these are isotone functions.
Lemma:
=[x, = b,(x)|=]x, is strictly dominated by b,(x) v x, ]
Proof.
If =[x, = b,(x)], then

U, (X, v b,(X),x_,) = U,(X,,x_,) = U, (b,(X),x_,) - U, (x, A b, (x),x_,) > O

Supermodularity +
increasing differences =




Rationalizability & Equilibrium

Theorem (Milgrom & Roberts): The smallest
rationalizable strategies for the players are given by

Z = lim b*(x)

- k—o0

Similarly the largest rationalizable strategies for the
players are given by
Z = lim B“(x)

k—x

Both are Nash equilibrium profiles.

Corollary: there exist pure strategy Nash equilibria z
and z s.t.

a For each rationalizable x, z=x= z

o For each Nash equilibrium x, z = x = z.
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Partnership Game

Two players; employer (E) and worker (W)
E and W provide K and L, resp.
Output: fIK,L) = K*LP, 0 < a,B,a+p < 1.
Payoffs of E and W.

(K,L)2 - K, (K,L)/2 - L.
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Rationalizab




Proof

b%(x) is isotone and X is complete, so limit z of b%(x) exists.

By continuity of payoffs, its limit is a fixed point of b, and hence a
Nash equilibrium.

X, # z, = X, # b K(x) for some k, and hence x,, is deleted during
iterated deletion of dominated strategies.
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Comparative Statics

Theorem. (Milgrom & Roberts) Consider a family of
supermodular games with payoffs parameterized by t.
Suppose that for all n, x_,, U (x,,x_,;t) is supermodular in (x,,f).
Then

z(t), z(t) are isotone.

Proof. By Topkis’'s theorem, b/(x) is isotone in t. Hence, if { >t’,

by (x) = by (x)
z(t) = lim b/ (x) = lim by’(x) = z(t')

and similarly for z.

28



Example — partnership game

s f(K,L) = tKeLB,




Monotone supermodular games

G=(N,T,A,u,p)

T=Tyx T;x..x T, (CRM
A. compact sublattice of RX
u:AxT—R

o Ufa,.): T — R is measurable

o ug. ,t): A— Ris continuous, bounded, supermodular in a;, has
increasing differences in a and in (a,,¢)

p(.|t) is increasing function of t—in the sense of 1s-order
stochastic dominance (e.g. p is affiliated).

Theorem: There exist BNE s* and s** such that
o Foreach BNE s, s*= s = 8™
o Both s*and s** are isotone.
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