14.126 GAME THEORY

PROBLEM SET 1

MIHAI MANEA

Question 1

Provide an example of a 2-player game with strategy set $[0, \infty)$ for either player and payoffs continuous in the strategy profile, such that no strategy survives iterated deletion of strictly dominated strategies $\left(S^{\infty}=\emptyset\right)$, but the set of strategies remaining at every stage is nonempty $\left(S^{k} \neq \emptyset\right.$ for $\left.k=1,2, \ldots\right)$.

Question 2

In the normal form game below player 1 chooses rows, player 2 chooses columns, and

player 3 chooses matrices. We only indicate player 3's payoff. Show that action D is not a best response for player 3 to any independent belief about opponents' play (mixed strategy for players 1 and 2), but that D is not strictly dominated. Comment.

Question 3

Each of two players $i=1,2$ receives a ticket with a number drawn from a finite set Θ_{i}. The number written on a player's ticket represents the size of a prize he may receive. The two prizes are drawn independently, with the value on i 's ticket distributed according to F_{i}. Each player is asked simultaneously (and independently) whether he wants to exchange
his ticket for the other player's ticket. If both players agree then the prizes are exchanged; otherwise each player receives his own prize. Find all Bayesian Nash equilibria (in pure or mixed strategies).

Question 4

A game $G=(N, S, u)$ is said to be symmetric if $S_{1}=S_{2}=\cdots=S_{n}$ and there is some function $f: S_{1} \times S_{1}^{n-1} \rightarrow \mathbb{R}$ such that $f\left(s_{i}, s_{-i}\right)$ is symmetric with respect to the entries in s_{-i}, and $u_{i}(s)=f\left(s_{i}, s_{-i}\right)$ for every player i.
(1) Consider a symmetric game $G=(N, S, u)$ in which S_{1} is a compact and convex subset of a Euclidean space and u_{i} is continuous and quasiconcave in s_{i}. Show that there exists a symmetric pure-strategy Nash equilibrium (i.e. a pure-strategy Nash equilibrium where every player uses the same strategy).
(2) Suggest a definition for symmetric Bayesian games, $G=(N, A, \Theta, u, T, p)$, and find broad conditions on such a game G that ensure that G has a symmetric Bayesian Nash equilibrium.
(3) Consider a Cournot oligopoly with inverse-demand function P and a cost function γ that is common to all firms. Each firm's cost depends on its production level and its idiosyncratic cost parameter, which is drawn from a finite set C. Assume the vector of cost parameters $\left(c_{1}, \ldots, c_{n}\right)$ is symmetrically distributed. Each firm i privately knows its own $\operatorname{cost} c_{i}$, but not the others' costs, and independently chooses a quantity q_{i} to produce. Find conditions on P and γ that guarantee existence of a symmetric Bayesian Nash equilibrium in this game. (Note that the profit of each firm i is $\left.q_{i} P\left(q_{1}+\cdots+q_{n}\right)-\gamma\left(q_{i}, c_{i}\right).\right)$

Question 5

Let $N=\{0,1, \ldots, n\}^{2}$ be a two dimensional grid. Say that two points (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in N are neighbors if $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1$. At each point $i \in N$, there is a firm, also denoted by i. As in a Cournot oligopoly, simultaneously, each firm i chooses a quantity $q_{i} \in[0,1]$ to
produce at zero marginal cost, and sells at price

$$
P_{i}(\theta, q, \alpha)=\theta-q_{i}-\sum_{k=1}^{\infty} \alpha^{k-1}\left(\sum_{j \in N_{i}^{k}} q_{j} /\left|N_{i}^{k}\right|\right)^{k} .
$$

Here, $\theta \in[1,2]$ is a common demand parameter, and $\alpha \in[0,1)$ is an interaction parameter with respect to distant neighbors. N_{i}^{k} is the k-th iterated set of neighbors of i : thus N_{i}^{1} is the immediate neighbors of i (e.g., $\left.N_{(0,0)}^{1}=\{(1,0),(0,1)\}\right), N_{i}^{2}$ is the neighbors of neighbors of i (e.g., $\left.N_{(0,0)}^{2}=\{(0,0),(0,2),(2,0),(1,1)\}\right)$, and so on. The payoff of firm i is its profit: $q_{i} P_{i}$.

The value of α is common knowledge, but θ is unknown, drawn from some finite set $\Theta \subseteq[1,2]$. The players' information about θ is represented by a finite type space T, with some joint prior $p \in \Delta(\Theta \times T)$.
(1) For any choice of a Bayesian Nash equilibrium $q_{\alpha}^{*}: T \rightarrow[0,1]^{N}$ of the above Bayesian game (for each α), and for any $t_{i} \in T_{i}$, find $\lim _{\alpha \rightarrow 0} q_{\alpha}^{*}\left(t_{i}\right)$.
[It suffices to find a formula that consists of iterated expectations of the form $E_{i j_{1} \ldots j_{k}}\left[\theta \mid t_{i}\right] \equiv E\left[E\left[\cdots E\left[\theta \mid t_{j_{k}}\right] \cdots \mid t_{j_{1}}\right] \mid t_{i}\right]$, where $i, j_{1}, \ldots, j_{k} \in N$. Your formula does not need to be in closed form, but it should not refer to q^{*}.]
(2) Simplify your result in part (a) under the assumption that $E_{i j}\left[\theta \mid t_{i}\right]=E\left[\theta \mid t_{i}\right]$ for all i, j, and t_{i}.

MIT OpenCourseWare
https://ocw.mit.edu

14.126 Game Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

