Reputation

Mihai Manea

MIT

Game with Short-Run Players

(N, A, u): two-player normal-form game played in every period t = 0, 1, ...

1 is a long-run player and 2 is a short-run player (series of one-period players or a very impatient player). 2 plays a best response to 1's anticipated action at every date.

Fudenberg, Kreps, and Maskin (1988): folk theorem if game is common knowledge

► B₂: 2's mixed best responses in stage game to 1's mixed actions

$$\bullet \underline{u}_1 = \min_{\sigma_2 \in B_2} \max_{a_1 \in A_1} u_1(a_1, \sigma_2)$$

Any payoff for player 1 above \underline{u}_1 is sustainable in a subgame perfect equilibrium for high δ

Fudenberg and Levine (1989): if game is perturbed to allow for irrational types of player 1, folk theorem overturned

- $u_1^* = \max_{a_1 \in A_1} \min_{\sigma_2 \in BR_2(a_1)} u_1(a_1, \sigma_2)$: Stackelberg payoff
- $\blacktriangleright\,$ 1 obtains his Stackelberg payoff in any Nash equilibrium for high $\delta\,$

Compare \underline{u}_1 and u_1^* for Cournot duopoly.

Perturbed Game

- Ω: countable space of types for player 1, prior μ
- Only player 1 knows his type
- $u_1(a, \omega)$: player 1's payoff depends on ω ; player 2's does not
- ω_0 : "rational" type of player 1 with payoffs given by original u_1
- ω(a₁): "crazy" type of player 1 for which playing a₁ at every history is a strictly dominant strategy in the repeated game
- $\omega^* = \omega(a_1^*)$ with $\mu(\omega^*) > 0$

Key Lemma

- Any strategy profile σ (together with μ) generates a unique joint distribution over play paths and types π ∈ Δ((A₁ × A₂)[∞] × Ω)
- h^* : event in $(A_1 \times A_2)^{\infty} \times \Omega$ in which $a_1^t = a_1^*$ for all t
- $\pi_t^* = \pi(a_1^t = a_1^* | h^{t-1})$: probability of a_1^* at *t* conditional on history h^{t-1}
- $n(\pi_t^* \leq \overline{\pi})$: number of periods t s.t. $\pi_t^* \leq \overline{\pi}$ for $\overline{\pi} \in (0, 1)$
- ▶ π_t^* and $n(\pi_t^* \le \overline{\pi})$ are random variables defined on path-type space

Lemma 1

Let σ be a strategy profile such that $\pi(h^*|\omega^*) = 1$. Then

$$\pi\left(n(\pi_t^* \leq \overline{\pi}) \leq \frac{\ln \mu^*}{\ln \overline{\pi}} \mid h^*\right) = 1.$$

Proof

 h^t : history of length t with $\pi(h^t) > 0$ in which player 1 played a_1^* every period

 $h^{t,1}$ ($h^{t,2}$): event that h^{t-1} is observed and player 1 (2) plays at t as in h^t

$$\pi(\omega^*|h^t) = \frac{\pi(h^t \& \omega^*|h^{t-1})}{\pi(h^t|h^{t-1})} = \frac{\pi(\omega^*|h^{t-1})\pi(h^t|\omega^*, h^{t-1})}{\pi(h^t|h^{t-1})}$$
$$= \frac{\pi(\omega^*|h^{t-1})\pi(h^{t,1}|\omega^*, h^{t-1})\pi(h^{t,2}|\omega^*, h^{t-1})}{\pi(h^{t,1}|h^{t-1})\pi(h^{t,2}|h^{t-1})}$$
$$= \frac{\pi(\omega^*|h^{t-1})\pi(h^{t,2}|\omega^*, h^{t-1})}{\pi(h^{t,1}|h^{t-1})\pi(h^{t,2}|h^{t-1})}$$
$$= \frac{\pi(\omega^*|h^{t-1})}{\pi_t^*}$$

Proof

$$\pi(\omega^*|h^t) = \frac{\pi(\omega^*|h^{t-1})}{\pi_t^*} = \dots = \frac{\pi(\omega^*|h^0)}{\pi_t^*\pi_{t-1}^*\cdots\pi_0^*} = \frac{\mu^*}{\pi_t^*\pi_{t-1}^*\cdots\pi_0^*}$$

$$\pi(\omega^*|h^t) < 1. \text{ at most } \ln \mu^* / \ln \overline{\pi} \text{ terms in the denominator of th}$$

Since $\pi(\omega^*|h^t) \leq 1$, at most $\ln \mu^* / \ln \overline{\pi}$ terms in the denominator of the last expression can be $\leq \overline{\pi}$.

Therefore, with probability 1,

$$n(\pi_t^* \leq \overline{\pi}) \leq \ln \mu^* / \ln \overline{\pi}.$$

Main Result

- $u_m = \min_{\sigma_2} u_1(a_1^*, \sigma_2, \omega_0)$: lowest stage payoff for 1 when he plays a_1^*
- $u_M = \max_a u_1(a, \omega_0)$: highest stage payoff for 1
- ► $\overline{u}_1 = \max_{a_1} \max_{\sigma_2 \in BR_2(a_1)} u_1(a_1, a_2)$: "upper" Stackelberg payoff
- <u>v</u>₁(δ, μ, ω₀) (v̄₁(δ, μ, ω₀)): infimum (supremum) of 1's payoffs in repeated game across Nash equilibria in which 1 uses a pure strategy

Theorem 1

For any value μ^* , there exists a number $\kappa(\mu^*)$ s.t. for all δ and all (μ, Ω) with $\mu(\omega^*) = \mu^*$, we have

$$\underline{v}_1(\delta,\mu,\omega_0) \geq \delta^{\kappa(\mu^*)} u_1^* + (1-\delta^{\kappa(\mu^*)}) u_m.$$

Moreover, there exists κ such that for all δ , we have

$$\overline{v}_1(\delta,\mu,\omega_0) \leq \delta^{\kappa}\overline{u}_1 + (1-\delta^{\kappa})u_M.$$

As $\delta \to 1$, the payoff bounds converge to u_1^* and \overline{u}_1 (generically identical).

Proof

 $\exists \overline{\pi} < 1$ s.t. in any Nash equilibrium player 2 plays a best response to a_1^* at every stage *t* where $\pi_t^* > \overline{\pi}$

- Pure strategy best response correspondence has closed graph.
- Action spaces are finite.

 $\exists \kappa(\mu^*) \text{ s.t. } \pi(n(\pi^* \leq \overline{\pi}) > \kappa(\mu^*) \mid h^*) = 0$ (by the lemma)

If rational player 1 deviates to playing a_1^* always, there are at most $\kappa(\mu^*)$ periods in which player 2 will not play a best response to a_1^* . Then payoff from deviating is at least

$$\delta^{\kappa(\mu^*)}u_1^*+(1-\delta^{\kappa(\mu^*)})u_m.$$

Proof for upper bound requires a version of the lemma for $\omega_0...$ from the perspective of rational player 1, player 2 plays a best response to his action at all but a finite set of dates.

Fudenberg and Levine (1992): extension to mixed strategy Nash equilibria

14.126 Game Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.