Reputation

Mihai Manea

MIT

Game with Short-Run Players

(N, A, u) : two-player normal-form game played in every period $t=0,1, \ldots$
1 is a long-run player and 2 is a short-run player (series of one-period players or a very impatient player). 2 plays a best response to 1 's anticipated action at every date.
Fudenberg, Kreps, and Maskin (1988): folk theorem if game is common knowledge

- B_{2} : 2's mixed best responses in stage game to 1's mixed actions
- $\underline{u}_{1}=\min _{\sigma_{2} \in B_{2}} \max _{a_{1} \in A_{1}} u_{1}\left(a_{1}, \sigma_{2}\right)$
- Any payoff for player 1 above \underline{u}_{1} is sustainable in a subgame perfect equilibrium for high δ
Fudenberg and Levine (1989): if game is perturbed to allow for irrational types of player 1, folk theorem overturned
- $u_{1}^{*}=\max _{a_{1} \in A_{1}} \min _{\sigma_{2} \in B R_{2}\left(a_{1}\right)} u_{1}\left(a_{1}, \sigma_{2}\right)$: Stackelberg payoff
- 1 obtains his Stackelberg payoff in any Nash equilibrium for high δ Compare \underline{u}_{1} and u_{1}^{*} for Cournot duopoly.

Perturbed Game

- Ω : countable space of types for player 1 , prior μ
- Only player 1 knows his type
- $u_{1}(a, \omega)$: player 1's payoff depends on ω; player 2's does not
- ω_{0} : "rational" type of player 1 with payoffs given by original u_{1}
- $\omega\left(a_{1}\right)$: "crazy" type of player 1 for which playing a_{1} at every history is a strictly dominant strategy in the repeated game
- $\omega^{*}=\omega\left(a_{1}^{*}\right)$ with $\mu\left(\omega^{*}\right)>0$

Key Lemma

- Any strategy profile σ (together with μ) generates a unique joint distribution over play paths and types $\pi \in \Delta\left(\left(A_{1} \times A_{2}\right)^{\infty} \times \Omega\right)$
- h^{*} : event in $\left(A_{1} \times A_{2}\right)^{\infty} \times \Omega$ in which $a_{1}^{t}=a_{1}^{*}$ for all t
- $\pi_{t}^{*}=\pi\left(a_{1}^{t}=a_{1}^{*} \mid h^{t-1}\right)$: probability of a_{1}^{*} at t conditional on history h^{t-1}
- $n\left(\pi_{t}^{*} \leq \bar{\pi}\right)$: number of periods t s.t. $\pi_{t}^{*} \leq \bar{\pi}$ for $\bar{\pi} \in(0,1)$
- π_{t}^{*} and $n\left(\pi_{t}^{*} \leq \bar{\pi}\right)$ are random variables defined on path-type space

Lemma 1

Let σ be a strategy profile such that $\pi\left(h^{*} \mid \omega^{*}\right)=1$. Then

$$
\pi\left(\left.n\left(\pi_{t}^{*} \leq \bar{\pi}\right) \leq \frac{\ln \mu^{*}}{\ln \bar{\pi}} \right\rvert\, h^{*}\right)=1
$$

Proof

h^{t} : history of length t with $\pi\left(h^{t}\right)>0$ in which player 1 played a_{1}^{*} every period
$h^{t, 1}\left(h^{t, 2}\right)$: event that h^{t-1} is observed and player 1 (2) plays at t as in h^{t}

$$
\begin{aligned}
\pi\left(\omega^{*} \mid h^{t}\right)=\frac{\pi\left(h^{t} \& \omega^{*} \mid h^{t-1}\right)}{\pi\left(h^{t} \mid h^{t-1}\right)} & =\frac{\pi\left(\omega^{*} \mid h^{t-1}\right) \pi\left(h^{t} \mid \omega^{*}, h^{t-1}\right)}{\pi\left(h^{t} \mid h^{t-1}\right)} \\
& =\frac{\pi\left(\omega^{*} \mid h^{t-1}\right) \pi\left(h^{t, 1} \mid \omega^{*}, h^{t-1}\right) \pi\left(h^{t, 2} \mid \omega^{*}, h^{t-1}\right)}{\pi\left(h^{t, 1} \mid h^{t-1}\right) \pi\left(h^{t, 2} \mid h^{t-1}\right)} \\
& =\frac{\pi\left(\omega^{*} \mid h^{t-1}\right) \pi\left(h^{t, 2} \mid \omega^{*}, h^{t-1}\right)}{\pi\left(h^{t, 1} \mid h^{t-1}\right) \pi\left(h^{t, 2} \mid h^{t-1}\right)} \\
& =\frac{\pi\left(\omega^{*} \mid h^{t-1}\right)}{\pi_{t}^{*}}
\end{aligned}
$$

Proof

$$
\pi\left(\omega^{*} \mid h^{t}\right)=\frac{\pi\left(\omega^{*} \mid h^{t-1}\right)}{\pi_{t}^{*}}=\ldots=\frac{\pi\left(\omega^{*} \mid h^{0}\right)}{\pi_{t}^{*} \pi_{t-1}^{*} \cdots \pi_{0}^{*}}=\frac{\mu^{*}}{\pi_{t}^{*} \pi_{t-1}^{*} \cdots \pi_{0}^{*}}
$$

Since $\pi\left(\omega^{*} \mid h^{t}\right) \leq 1$, at most $\ln \mu^{*} / \ln \bar{\pi}$ terms in the denominator of the last expression can be $\leq \bar{\pi}$.
Therefore, with probability 1 ,

$$
n\left(\pi_{t}^{*} \leq \bar{\pi}\right) \leq \ln \mu^{*} / \ln \bar{\pi}
$$

Main Result

- $u_{m}=\min _{\sigma_{2}} u_{1}\left(a_{1}^{*}, \sigma_{2}, \omega_{0}\right)$: lowest stage payoff for 1 when he plays a_{1}^{*}
- $u_{M}=\max _{a} u_{1}\left(a, \omega_{0}\right)$: highest stage payoff for 1
- $\bar{u}_{1}=\max _{a_{1}} \max _{\sigma_{2} \in B R_{2}\left(a_{1}\right)} u_{1}\left(a_{1}, a_{2}\right)$: "upper" Stackelberg payoff
- $\underline{v}_{1}\left(\delta, \mu, \omega_{0}\right)\left(\bar{v}_{1}\left(\delta, \mu, \omega_{0}\right)\right)$: infimum (supremum) of 1 's payoffs in repeated game across Nash equilibria in which 1 uses a pure strategy

Theorem 1

For any value μ^{*}, there exists a number $\kappa\left(\mu^{*}\right)$ s.t. for all δ and all (μ, Ω) with $\mu\left(\omega^{*}\right)=\mu^{*}$, we have

$$
\underline{v}_{1}\left(\delta, \mu, \omega_{0}\right) \geq \delta^{k\left(\mu^{*}\right)} u_{1}^{*}+\left(1-\delta^{k\left(\mu^{*}\right)}\right) u_{m}
$$

Moreover, there exists κ such that for all δ, we have

$$
\bar{v}_{1}\left(\delta, \mu, \omega_{0}\right) \leq \delta^{\kappa} \bar{u}_{1}+\left(1-\delta^{\kappa}\right) u_{M} .
$$

As $\delta \rightarrow 1$, the payoff bounds converge to u_{1}^{*} and \bar{u}_{1} (generically identical).

Proof

$\exists \bar{\pi}<1$ s.t. in any Nash equilibrium player 2 plays a best response to a_{1}^{*} at every stage t where $\pi_{t}^{*}>\bar{\pi}$

- Pure strategy best response correspondence has closed graph.
- Action spaces are finite.
$\exists \kappa\left(\mu^{*}\right)$ s.t. $\pi\left(n\left(\pi^{*} \leq \bar{\pi}\right)>\kappa\left(\mu^{*}\right) \mid h^{*}\right)=0$ (by the lemma)
If rational player 1 deviates to playing a_{1}^{*} always, there are at most $\kappa\left(\mu^{*}\right)$ periods in which player 2 will not play a best response to a_{1}^{*}. Then payoff from deviating is at least

$$
\delta^{k\left(\mu^{*}\right)} u_{1}^{*}+\left(1-\delta^{k\left(\mu^{*}\right)}\right) u_{m}
$$

Proof for upper bound requires a version of the lemma for $\omega_{0} \ldots$ from the perspective of rational player 1, player 2 plays a best response to his action at all but a finite set of dates.

Fudenberg and Levine (1992): extension to mixed strategy Nash equilibria

MIT OpenCourseWare
https://ocw.mit.edu

14.126 Game Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

