Global Games

14.126 Game Theory Muhamet Yildiz

Motivation

- Multiple equilibria exist in settings with strategic complementarities
 - Investment/Development
 - Search
 - Bank runs
 - Currency attacks
- Global Games: introducing a certain type of incomplete information leads to a unique equilibrium prediction.

 θ is common knowledge

 $\theta < 0$

 θ is common knowledge

θ > 1

θ is not common knowledge

- θ is uniformly distributed over a large interval
- Each player *i* gets a signal

$$\mathbf{x}_i = \mathbf{\theta} + \mathbf{\varepsilon} \mathbf{\eta}_i$$

- \Box (η_1 , η_2) is bounded
- Independent of θ
- iid with continuous F (common knowledge)

 $\Box E[\eta_i] = 0$

Recall: Monotone supermodular games

- G = (N, T, A, u, p)
- $\bullet \quad T = T_0 \times T_1 \times \ldots \times T_n \ (\subseteq \mathsf{R}^M)$
- A_i compact sublattice of R^{K}
- $u_i: A \times T \rightarrow R$
 - □ $u_i(a,.)$: $T \rightarrow R$ is measurable
 - □ $u_i(.,t)$: $A \to R$ is continuous, "bounded", supermodular in a_i , has increasing differences in a and in (a_i,t)
- $p(.|t_i)$ is increasing function of t_i —in the sense of 1st-order stochastic dominance (e.g. p is affiliated).
- Theorem: There exist BNE s* and s** such that

□ For each BNE *s*, $s^* \ge s \ge s^{**}$.

• Both s^* and s^{**} are isotone.

Conditional Beliefs given x_i $\theta =_{d} X_{i} - \varepsilon \eta_{i}$ • i.e. $\Pr(\theta \le \theta' | x_i) = 1 - F((x_i - \theta')/\epsilon) = G(\theta' | x_i)$ $\mathbf{x}_i =_{d} \mathbf{x}_i + \varepsilon(\eta_i - \eta_i)$ • $\Pr(x_i \leq x_i' | x_i) = \Pr(\varepsilon(\eta_i - \eta_i) \leq x_i' - x_i)$ • $\Pr(\theta \leq \theta', x_i \leq x_i' | x_i) =$ $\int 1_{\{\theta \le \theta'\}} F((x_j' - \theta) / \varepsilon) dG(\theta | x_i) \text{ decreasing in } x_i$ because integrand decreasing in θ and $G(\cdot|x_i)$ FOSD $G(\cdot | x_i')$ whenever $x_i \ge x_i'$ • $\mathcal{E}[\theta|\mathbf{x}_i] = \mathbf{x}_i$

Payoffs

- Invest > Not-Invest
- U_i(a_i,a_j,θ,x) is supermodular.
- Monotone supermodular
- There exist greatest and smallest rationalizable strategies, which are
 - Bayesian Nash Equilibria
 - Monotone (isotone)

Monotone BNE

Best response

Invest iff $x_i \ge \Pr(s_j = \text{Not-Invest}|x_i)$

• Assume supp(θ) = [a,b] where a < 0 < 1 < b.

•
$$x_i < 0 \Rightarrow s_i(x_i) = \text{Not Invest}$$

- $x_i > 1 \Rightarrow s_i(x_i) = \text{Invest}$
- A cutoff x_i^* s.t.

 $\Box x_i < x_i^* \Rightarrow s_i(x_i) = \text{Not Invest}; x_i > x_i^* \Rightarrow s_i(x_i) = \text{Invest}$

- Symmetry: $x_1^* = x_2^* = x^*$
- $x^* = \Pr(s_i = \text{Not-Invest}|x^*) = \Pr(x_i < x^*|x_i = x^*) = 1/2$
- "Unique" BNE

Questions

- What is the smallest BNE?
- What is the largest BNE?
- Which strategies are rationalizable?
- Compute directly.

Risk-dominance

In a 2 x 2 symmetric game, a strategy is said to be "risk dominant" iff it is a best reply when the other player plays each strategy with equal probabilities.

Invest Not-Invest

Players play according to risk dominance

Carlsson & van Damme

Risk Dominance

Suppose that (A,A) and (B,B) are NE. (A,A) is risk dominant if $(U_{11}-U_{21})(V_{11}-V_{12})$ \succ $(U_{22}-U_{12})(V_{22}-V_{21})$ Affine transformation: g_1^a ... (A,A) risk dominant if $g_1^a g_2^a > g_1^b g_2^b$ i is indifferent against <u>s</u>; (A,A) risk dominant if $\underline{s}_1 + \underline{s}_2 < 1$

Dominance, risk-dominance regions

Dominance region

$$D_i^a = \{(u,v) | g_i^a > 0, g_i^b < 0\}$$

Risk-dominance region

 $R^{a} = \{(u,v) | g_{1}^{a} > 0, g_{2}^{a} > 0; g_{1}^{b}, g_{2}^{b} > 0 \Longrightarrow \underline{s}_{1} + \underline{s}_{2} < 1\}$

Model

- Θ ⊆ ℜ^m is open; (*u*,*v*) are continuously differentiable functions of θ w/ bounded derivatives;
- prior on θ has a density h which is strictly positive, continuously differentiable, bounded.
- Each player *i* observes a signal

$$\boldsymbol{x}_i = \boldsymbol{\theta} + \boldsymbol{\varepsilon} \boldsymbol{\eta}_i$$

- \Box (η_1 , η_2) is bounded,
- Independent of θ ,
- Admits a continuous density

Theorem

Suppose that

- □ *x* is on a continuous curve $C \subseteq \Theta$
- □ $(u(c),v(c)) \in R^a$ for each $c \in C$

□ $(u(c),v(c)) \in D^a$ for some $c \in C$.

Then A is the only rationalizable action at x when ε is small.

"Public" Information

• $\theta \sim N(y,\tau^2)$ and $\epsilon \eta_i \sim N(0,\sigma^2)$

Given x_i,

$$\begin{split} \theta &\sim \mathsf{N}(\mathsf{rx}_\mathsf{i}\texttt{+}(1\texttt{-}\mathsf{r})\mathsf{y},\,\sigma^2\mathsf{r})\\ \mathsf{x}_\mathsf{j} &\sim \mathsf{N}(\mathsf{rx}_\mathsf{i}\texttt{+}(1\texttt{-}\mathsf{r})\mathsf{y},\,\sigma^2(\mathsf{r}\texttt{+}1))\\ \mathsf{r} &= \tau^2/(\sigma^2\texttt{+}\tau^2) \end{split}$$

(Monotone supermodularity) monotone symmetric NE w/cutoff x^c:

$$rx^{c} + (1-r)y = \Pr(x_{j} \le x^{c} \mid x_{j} = x^{c}) = \Phi\left(\frac{(1-r)(x^{c}-y)}{\sigma\sqrt{r+1}}\right)$$

Unique monotone NE (and rationalizable strategy) if

$$rx^{c} + (1-r)y - \Pr(x_{j} \leq x^{c} \mid x_{i} = x^{c})$$

is increasing in x^c whenever zero, i.e.,

$$\sigma^2 < 2\pi \tau^4 (r+1)$$

Figure 3.1: Parameter Range for Unique Equilibrium

Courtesy of Stephen Morris and Hyun Song Shin. Used with permission.

MIT OpenCourseWare https://ocw.mit.edu

14.126 Game Theory Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.