Extensive Form Games

Mihai Manea

MIT

Extensive-Form Games

- N : finite set of players; nature is player $0 \in N$
- tree: order of moves
- payoffs for every player at the terminal nodes
- information partition
- actions available at every information set
- description of how actions lead to progress in the tree
- random moves by nature

Courtesy of The MIT Press. Used with permission.

Game Tree

- $(X,>)$: tree
- X : set of nodes
- $x>y$: node x precedes node y
- $\phi \in X$: initial node, $\phi>x, \forall x \in X \backslash\{\phi\}$
- $>$ transitive $(x>y, y>z \Rightarrow x>z)$ and asymmetric $(x>y \Rightarrow y \ngtr x)$
- every node $x \in X \backslash\{\phi\}$ has one immediate predecessor: $\exists x^{\prime}>x$ s.t. $x^{\prime \prime}>x \& x^{\prime \prime} \neq x^{\prime} \Rightarrow x^{\prime \prime}>x^{\prime}$
- $Z=\{z \mid \nexists x, z>x\}$: set of terminal nodes
- $z \in Z$ determines a unique path of moves through the tree, payoff $u_{i}(z)$ for player i

Information Partition

- information partition: a partition of $X \backslash Z$
- node x belongs to information set $h(x)$
- player $i(h) \in N$ moves at every node x in information set h
- $i(h)$ knows that he is at some node of h but does not know which one
- same player moves at all $x \in h$, otherwise players might disagree on whose turn it is
- $i(x):=i(h(x))$

Actions

- $A(x)$: set of available actions at $x \in X \backslash Z$ for player $i(x)$
- $A(x)=A\left(x^{\prime}\right)=: A(h), \forall x^{\prime} \in h(x)$ (otherwise $i(h)$ might play an infeasible action)
- each node $x \neq \phi$ associated with the last action taken to reach it
- every immediate successor of x labeled with a different $a \in A(x)$ and vice versa
- move by nature at node x : probability distribution over $A(x)$

Strategies

- $H_{i}=\{h \mid i(h)=i\}$
- $S_{i}=\prod_{h \in H_{i}} A(h)$: set of pure strategies for player i
- $s_{i}(h)$: action taken by player i at information set $h \in H_{i}$ under $s_{i} \in S_{i}$
- $S=\prod_{i \in N} S_{i}$: strategy profiles
- A strategy is a complete contingent plan specifying the action to be taken at each information set.
- Mixed strategies: $\sigma_{i} \in \Delta\left(S_{i}\right)$
- mixed strategy profile $\sigma \in \prod_{i \in N} \Delta\left(S_{i}\right) \rightarrow$ probability distribution $O(\sigma) \in \Delta(Z)$
- $u_{i}(\sigma)=\mathbb{E}_{O(\sigma)}\left(u_{i}(z)\right)$

Strategic Form

- The strategic form representation of the extensive form game is the normal form game defined by (N, S, u)
- A mixed strategy profile is a Nash equilibrium of the extensive form game if it constitutes a Nash equilibrium of its strategic form.

Grenade Threat Game

Player 2 threatens to explode a grenade if player 1 doesn't give him \$1000.

- Player 1 chooses between g and $\neg g$.
- Player 2 observes player 1's choice, then decides whether to explode a grenade that would kill both.

Strategic Form Representation

	易，是	是，	©，\％	© ，$)^{(\cdot)}$
g	－- ，$-\infty$	－,$--\infty$	－1000，1000＊	－1000，1000
$\neg g$	$-\infty,-\infty$	0，${ }^{*}$	－- ， ）	0， 0^{*}

Three pure strategy Nash equilibria．Only $(\neg g, \odot, \odot)$ is subgame perfect．曷 is not a credible threat．

Behavior Strategies

- $b_{i}(h) \in \Delta(A(h))$: behavior strategy for player $i(h)$ at information set h
- $b_{i}(a \mid h)$: probability of action a at information set h
- behavior strategy $b_{i} \in \prod_{h \in H_{i}} \Delta(A(h))$
- independent mixing at each information set
- b_{i} outcome equivalent to the mixed strategy

$$
\begin{equation*}
\sigma_{i}\left(s_{i}\right)=\prod_{h \in H_{i}} b_{i}\left(s_{i}(h) \mid h\right) \tag{1}
\end{equation*}
$$

- Is every mixed strategy equivalent to a behavior strategy?
- Yes, under perfect recall.

Perfect Recall

No player forgets any information he once had or actions he previously chose.

- If $x^{\prime \prime} \in h\left(x^{\prime}\right), x>x^{\prime}$, and the same player i moves at both x and x^{\prime} (and thus at $x^{\prime \prime}$), then there exists $\hat{x} \in h(x)$ (possibly $\hat{x}=x$) s.t. $\hat{x}>x^{\prime \prime}$ and the action taken at x along the path to x^{\prime} is the same as the action taken at \hat{x} along the path to $x^{\prime \prime}$.
- x^{\prime} and $x^{\prime \prime}$ distinguished by information i does not have, so he cannot have had it at $h(x)$
- x^{\prime} and $x^{\prime \prime}$ consistent with the same action at $h(x)$ since i must remember his action there
- Equivalently, every node in $h \in H_{i}$ must be reached via the same sequence of i's actions.

Equivalent Behavior Strategies

- $R_{i}(h)=\left\{s_{i} \mid h\right.$ is on the path of $\left(s_{i}, s_{-i}\right)$ for some $\left.s_{-i}\right\}$: set of i 's pure strategies that do not preclude reaching information set $h \in H_{i}$
- Under perfect recall, a mixed strategy σ_{i} is equivalent to a behavior strategy b_{i} defined by

$$
\begin{equation*}
b_{i}(a \mid h)=\frac{\sum_{\left\{s_{i} \in R_{i}(h) \mid s_{i}(h)=a\right\}} \sigma_{i}\left(s_{i}\right)}{\sum_{s_{i} \in R_{i}(h)} \sigma_{i}\left(s_{i}\right)} \tag{2}
\end{equation*}
$$

when the denominator is positive.

Theorem 1 (Kuhn 1953)

In extensive form games with perfect recall, mixed and behavior strategies are outcome equivalent under the formulae (1) \& (2).

Proof

- $h_{1}, \ldots, h_{\bar{k}}$: player i's information sets preceding h in the tree
- Under perfect recall, reaching any node in h requires i to take the same action a_{k} at each h_{k},

$$
R_{i}(h)=\left\{s_{i} \mid s_{i}\left(h_{k}\right)=a_{k}, \forall k=\overline{1, \bar{k}}\right\}
$$

- Conditional on getting to h, the distribution of continuation play at h is given by the relative probabilities of the actions available at h under the restriction of σ_{i} to $R_{i}(h)$,

$$
b_{i}(a \mid h)=\frac{\sum_{\left\{s_{i} \mid s_{i}\left(h_{k}\right)=a_{k}, \forall k=\overline{1, \bar{k}} \& s_{i}(h)=a\right\}} \sigma_{i}\left(s_{i}\right)}{\sum} .
$$

Example

Figure: Different mixed strategies can generate the same behavior strategy.

- $S_{2}=\{(A, C),(A, D),(B, C),(B, D)\}$
- Both $\sigma_{2}=1 / 4(A, C)+1 / 4(A, D)+1 / 4(B, C)+1 / 4(B, D)$ and $\sigma_{2}=1 / 2(A, C)+1 / 2(B, D)$ generate-and are equivalent to-the behavior strategy b_{2} with $b_{2}(A \mid h)=b_{2}(B \mid h)=1 / 2$ and $b_{2}\left(C \mid h^{\prime}\right)=b_{2}\left(D \mid h^{\prime}\right)=1 / 2$.

Example with Imperfect Recall

Courtesy of The MIT Press. Used with permission.
Figure: Player 1 forgets what he did at the initial node.

- $S_{1}=\{(A, C),(A, D),(B, C),(B, D)\}$
- $\sigma_{1}=1 / 2(A, C)+1 / 2(B, D) \rightarrow b_{1}=(1 / 2 A+1 / 2 B, 1 / 2 C+1 / 2 D)$
- b_{1} not equivalent to σ_{1}
- $\left(\sigma_{1}, L\right)$: prob. $1 / 2$ for paths (A, L, C) and (B, L, D)
- $\left(b_{1}, L\right)$: prob. $1 / 4$ to paths $(A, L, C),(A, L, D),(B, L, C),(B, L, D)$

Imperfect Recall and Correlations

Courtesy of The MIT Press. Used with permission.

- Since both A vs. B and C vs. D are choices made by player 1 , the strategy σ_{1} under which player 1 makes all his decisions at once allows choices at different information sets to be correlated
- Behavior strategies cannot produce this correlation, because when it comes time to choose between C and D, player 1 has forgotten whether he chose A or B.

Absent Minded Driver

Piccione and Rubinstein (1997)

- A drunk driver has to take the third out of five exits on the highway (exit 3 has payoff 1, other exits payoff 0).
- The driver cannot read the signs and forgets how many exits he has already passed.
- At each of the first four exits, he can choose C (continue) or E (exit). . imperfect recall: choose same action.
- C leads to exit 5 , while E leads to exit 1.
- Optimal solution involves randomizing: probability p of choosing C maximizes $p^{2}(1-p)$, so $p=2 / 3$.
- "Beliefs" given $p=2 / 3$: (27/65, 18/65, 12/65, $8 / 65$)
- E has conditional "expected" payoff of $12 / 65, C$ has 0 . Optimal strategy: E with probability 1, inconsistent.

Conventions

- Restrict attention to games with perfect recall, so we can use mixed and behavior strategies interchangeably.
- Behavior strategies are more convenient.
- Drop notation b for behavior strategies and denote by $\sigma_{i}(a \mid h)$ the probability with which player i chooses action a at information set h.

Survivor

THAI 21

- Two players face off in front of 21 flags.
- Players alternate in picking 1, 2 , or 3 flags at a time.
- The player who successfully grabs the last flag wins. Game of luck?

Backward Induction

- An extensive form game has perfect information if all information sets are singletons.
- Can solve games with perfect information using backward induction.
- Finite game $\rightarrow \exists$ penultimate nodes (successors are terminal nodes).
- The player moving at each penultimate node chooses an action that maximizes his payoff.
- Players at nodes whose successors are penultimate/terminal choose an optimal action given play at penultimate nodes.
- Work backwards to initial node...

Theorem 2 (Zermelo 1913; Kuhn 1953)

In a finite extensive form game of perfect information, the outcome(s) of backward induction constitutes a pure-strategy Nash equilibrium.

Market Entrance

- Incumbent firm 1 chooses a level of capital K_{1} (which is then fixed).
- A potential entrant, firm 2, observes K_{1} and chooses its capital K_{2}.
- The profit for firm $i=1,2$ is $K_{i}\left(1-K_{1}-K_{2}\right)$ (firm i produces output K_{i}, we use earlier demand function).
- Each firm dislikes capital accumulation by the other.
- A firm's marginal value of capital decreases with the other's.
- Capital levels are strategic substitutes.

Stackelberg Competition

- Profit maximization by firm 2 requires

$$
K_{2}=\frac{1-K_{1}}{2}
$$

- Firm 1 anticipates that firm 2 will act optimally, and therefore solves

$$
\max _{K_{1}}\left\{K_{1}\left(1-K_{1}-\frac{1-K_{1}}{2}\right)\right\}
$$

- Solution involves $K_{1}=1 / 2, K_{2}=1 / 4, \pi_{1}=1 / 8$, and $\pi_{2}=1 / 16$.
- Firm 1 has first mover advantage.
- In contrast, in the simultaneous move game, $K_{1}=1 / 3, K_{2}=1 / 3$, $\pi_{1}=1 / 9$, and $\pi_{2}=1 / 9$.

Centipede Game

- Player 1 has two piles in front of her: one contains 3 coins, the other 1.
- Player 1 can either take the larger pile and give the smaller one to player $2(T)$ or push both piles across the table to player $2(C)$.
- Every time the piles pass across the table, one coin is added to each.
- Players alternate in choosing whether to take the larger pile (T) or trust opponent with bigger piles (C).
- The game lasts 100 rounds.

What's the backward induction solution?

Chess Players and Backward Induction

Palacios-Huerta and Volij (2009)

- chess players and college students behave differently in the centipede game.
- Higher-ranked chess players end the game earlier.
- All Grandmasters in the experiment stopped at the first opportunity.
- Chess players are familiar with backward induction reasoning and need less learning to reach the equilibrium.
- Playing against non-chess-players, even chess players continue in the game longer.
- In long games, common knowledge of the ability to do complicated inductive reasoning becomes important for the prediction.

Subgame Perfection

- Backward induction solution is more than a Nash equilibrium.
- Actions are optimal given others' play-and form an equilibrium-starting at any intermediate node: subgame perfection. . . rules out non-credible threats.
- Subgame perfection extends backward induction to imperfect information games.
- Replace "smallest" subgames with a Nash equilibrium and iterate on the reduced tree (if there are multiple Nash equilibria in a subgame, all players expect same play).

Subgames

Subgame: part of a game that can be analyzed separately; strategically and informationally independent. . . information sets not "chopped up."

Definition 1

A subgame G of an extensive form game T consists of a single node x and all its successors in T, with the property that if $x^{\prime} \in G$ and $x^{\prime \prime} \in h\left(x^{\prime}\right)$ then $x^{\prime \prime} \in G$. The information sets, actions and payoffs in the subgame are inherited from T.

False Subgames

Courtesy of The MIT Press. Used with permission.

Subgame Perfect Equilibrium

σ : behavior strategy in T

- $\sigma \mid G$: the strategy profile induced by σ in subgame G of T (start play at the initial node of G, follow actions specified by σ, obtain payoffs from T at terminal nodes)
- Is $\sigma \mid G$ a Nash equilibrium of G for any subgame G ?

Definition 2

A strategy profile σ in an extensive form game T is a subgame perfect equilibrium if $\sigma \mid G$ is a Nash equilibrium of G for every subgame G of T.

- Any game is a subgame of itself \rightarrow a subgame perfect equilibrium is a Nash equilibrium.
- Subgame perfection coincides with backward induction in games of perfect information.

Nuclear Crisis

Russia provokes the US...

- The U.S. can choose to escalate (E) or end the game by ignoring the provocation (I).
- If the game escalates, Russia faces a similar choice: to back down (B), but lose face, or escalate (E).
- Escalation leads to nuclear crisis: a simultaneous move game where each nation chooses to either retreat (R) and lose credibility or detonate ($\boldsymbol{\delta}_{0}$). Unless both countries retreat, retaliation to the first nuclear strike culminates in nuclear disaster, which is infinitely costly.

The Extensive Form

Last Stage

The simultaneous-move game at the last stage has two Nash equilibria.

One Subgame Perfect Equilibrium

Another Subgame Perfect Equilibrium

MIT OpenCourseWare
https://ocw.mit.edu

14.126 Game Theory

Spring 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

