In class we used to following property twice (for the functions V and F when trying to construct a Liapunov function for a concave discounted dynamic program). Some people later asked me where this comes from.
Lemm(it)a. Suppose we have some function $H(z)$ that is concave and differentiable on $Z \subset R^{N}$ then we want to prove:

$$
\left(H^{\prime}(z)-H^{\prime}\left(z^{\prime}\right)\right) \cdot\left(z-z^{\prime}\right) \leq 0
$$

for all $z, z^{\prime} \in Z$.
Proof. By concavity of H we have that

$$
H^{\prime}\left(z^{\prime}\right) \cdot\left(z-z^{\prime}\right) \geq H(z)-H\left(z^{\prime}\right)
$$

and inverting the roles of z and z^{\prime}

$$
H^{\prime}(z) \cdot\left(z^{\prime}-z\right) \geq H\left(z^{\prime}\right)-H(z)
$$

The result follows by adding up both inequalities and rearranging.
Remark. Clearly if H is strictly concave the inequality is strict for $z^{\prime} \neq z$. Remark. For $N=1$ there is an intuitive graph that exemplifies this inequality. Note that we are not assuming $N=1$ however (above $H^{\prime}(z)$ and z are vectors)

