Recursive Methods

Introduction to Dynamic Optimization

Outline Today's Lecture

- \bullet housekeeping: ps#1 and recitation day/ theory general / web page
- finish Principle of Optimality: Sequence Problem $\Leftrightarrow \\ (for values and plans)$ solution to Bellman Equation
- begin study of Bellman equation with bounded and continuous ${\cal F}$
- tools: contraction mapping and theorem of the maximum

Sequence Problem vs. Functional Equation

• Sequence Problem: (SP)

$$V^{*}(x_{0}) = \sup_{\substack{\{x_{t+1}\}_{t=0}^{\infty}}} \sum_{t=0}^{\infty} \beta^{t} F(x_{t}, x_{t+1})$$

s.t. $x_{t+1} \in \Gamma(x_{t})$
 x_{0} given

• ... more succinctly

$$V^*(x_0) = \sup_{\tilde{x} \in \Pi(x_0)} u(\tilde{x})$$
(SP)

• functional equation (FE) [this particular FE called Bellman Equation]

$$V(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta V(y) \right\}$$
(FE)

Principle of Optimality

IDEA: use BE to find value function V^{\ast} and optimal plan x^{\ast}

- Thm 4.2. V^* defined by SP $\Rightarrow V^*$ solves FE
- Thm 4.3. V solves FE and $\ldots \Rightarrow V = V^*$
- Thm 4.4. $\tilde{x}^* \in \Pi(x_0)$ is optimal $\Rightarrow V^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta V^*(x_{t+1}^*)$
- Thm 4.5. $\tilde{x}^* \in \Pi(x_0)$ satisfies $V^*(x_t^*) = F(x_t^*, x_{t+1}^*) + \beta V^*(x_{t+1}^*)$ and

 $\Rightarrow \tilde{x}^*$ is optimal

Why is this Progress?

- intuition: breaks planning horizon into two: 'now' and 'then'
- **notation:** reduces unnecessary notation (especially with uncertainty)
- **analysis:** prove existence, uniqueness and properties of optimal policy (e.g. continuity, montonicity, etc...)
- **computation:** associated numerical algorithm are powerful for many applications

Proof of Theorem 4.3 (max case)

Assume for any $\tilde{x} \in \Pi(x_0)$

$$\lim_{T \to \infty} \beta^T V(x_T) = 0.$$

BE implies

$$V(x_0) \ge F(x_0, x_1) + \beta V(x_1), \text{ all } x_1 \in \Gamma(x_0) \\ = F(x_0, x_1^*) + \beta V(x_1^*), \text{ some } x_1^* \in \Gamma(x_0)$$

Substituting $V(x_1)$:

$$V(x_0) \geq F(x_0, x_1) + \beta F(x_1, x_2) + \beta^2 V(x_2), \text{ all } x \in \Pi(x_0)$$

= $F(x_0, x_1^*) + \beta F(x_1^*, x_2^*) + \beta^2 V(x_2^*), \text{ some } x^* \in \Pi(x_0)$

Continue this way

$$V(x_{0}) \geq \sum_{t=0}^{n} \beta^{t} F(x_{t}, x_{t+1}) + \beta^{n+1} V(x_{n+1}) \text{ for all } x \in \Pi(x_{0})$$
$$= \sum_{t=0}^{n} \beta^{t} F(x_{t}^{*}, x_{t+1}^{*}) + \beta^{n+1} V(x_{n+1}^{*}) \text{ for some } x^{*} \in \Pi(x_{0})$$

Since $\beta^T V(x_T) \to 0$, taking the limit $n \to \infty$ on both sides of both expressions we conclude that:

$$V(x_0) \geq u(\tilde{x}) \text{ for all } \tilde{x} \in \Pi(x_0)$$

$$V(x_0) = u(\tilde{x}^*) \text{ for some } \tilde{x}^* \in \Pi(x_0)$$

Bellman Equation as a Fixed Point

• define operator

$$T(f)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta f(y) \right\}$$

• V solution of BE \iff V fixed point of T [i.e. TV = V]

Bounded Returns:

- if ||F|| < B and F and Γ are continuos: T maps continuous bounded functions into continuous bounded functions
- bounded returns $\Rightarrow T$ is a Contraction Mapping \Rightarrow unique fixed point
- many other bonuses

Needed Tools

- Basic Real Analysis (section 3.1):

 {vector, metric, noSLP, complete} spaces
 cauchy sequences
 closed, compact, bounded sets
- Contraction Mapping Theorem (section 3.2)
- Theorem of the Maximum: study of RHS of Bellman equation (equivalently of T) (section 3.3)