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Outline Today’s Lecture 

• neoclassical growth application: use all theorems 

• constant returns to scale 

• homogenous returns 
• unbounded returns 
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Constant Returns 

F (λx, λy) =  λF (x, y) , for λ ≥ 0 

and, 
x ∈ X =⇒ λx ∈ X, for λ ≥ 0 

(i.e. X is a cone) 

y ∈ Γ (x) =⇒ λy ∈ Γ (λx) , for λ ≥ 0 

(graph of Γ, A, is a cone) 
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Restrictions 

• since F is unbounded is the sup < ∞? is the max well defined? 

• can we apply the Principle of Optimality? 

1. restrict Γ: for some α such that γβ < 1: 

y ∈ Γ (x) =⇒ kyk ≤ α kxk 

“state can’t grow too fast” 

2. restrict F : for some 0 < B  < ∞ 

|F (x, y)| ≤ B (kxk + kyk) all (x, y) ∈ A 

“some weak boundedness condition: only allow unboundedness 
along rays” 
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Implications 

kxtk ≤ αt kx0k for x ∈ Π (x0) all x0 ∈ X 

Thus: 

|un (x) − un−1 (x)| = βt |F (xt, xt+1)| 
≤ βtB (kxtk + kxt+1k) 
= βtB 

¡
αt kx0k + αt+1 kx0k 

¢ 
= (βα)t B (1 + α) kx0k → 0 

so un (x) is Cauchy =⇒ un (x) → u (x) 
So we have A1 and A2 =⇒ theorems 4.2 and 4.4 
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supremum’s properties 

• we established that v ∗ : X → R 

• note that u (λx) =  λu (x) and x ∈ Π (x0) =⇒ λx ∈ Π (λx0) 

• v ∗ must be homogenous of degree 1 

v ∗ (λx0) =  sup 
x∈Π(λx0 ) 

u (x) 

= up 
x 
λ ∈Π(x0 ) 

u 
³ 
λ 
x 
λ ́

 

= λ sup 
x̃∈Π(x0 ) 

u (x̃) 

= λv ∗ (x0) 

s

Introduction to Dynamic Optimization Nr. 6




|u (x)| = 

¯ ¯ ¯ ¯ ¯ 
∞X 

t=0 

βtF (xt, xt+1) ̄

 ¯ ¯ ¯ ¯ 
≤ 

∞X 

t=0 

βt |F (xt, xt+1)| 

≤ B 
∞X 

t=0 

βt 
¡
αt kx0k + αt+1 kx0k 

¢ 
≤ B kx0k 

∞X 

t=0 

(βα)t (1 + α) 

= 

· 

B 
1 +  α 
1 − βα 

¸ 

kx0k 

=⇒ |v∗ (x)| ≤ c kx0k for some c ∈ R 
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What Space to Use? 

H (X) =  

( 
f : X → R : f is continuous and homogenous of degree 1 

and f (x) 
kxk is bounded 

) 

kf k = sup
x∈X 
kxk=1 

|f (x)| = sup
x∈X 

|f (x)|
kxk 

• H (X) is complete 

• define operator T : H (X) → H (X) 

Tf  (x) =  max 
y∈Γ(x) 

{F (x, y) +  βf (y)} 
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Properties 

• Operator T : H (X) → H (X) 

Tf  (x) =  max 
y∈Γ(x) 

{F (x, y) +  βf (y)} 

• note that for any v ∈ H (X) 

βt |v (xt)| ≤ βt c kxtk ≤ (αβ)t c kx0k → 0 

thus βt v (xt) → 0 for all feasible plans (Theorems 4.3 and 4.5 apply) 

=⇒ T has unique fixed point v ∈ H (X) 

• is T is a contraction? 
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Is T a contraction? 

• Modify Blackwell’s condition (bounded functions) to show that T it is 
a contraction; approach in SLP 

• Note that 
Tf  
kxk = ax 

y∈Γ(x) 

½ 
1 
kxk 

F (x, y) +  β 
1 
kxk f 

µ 
y 
kyk kyk

¶¾ 

= ax 
y∈Γ(x) 

½ 

F 

µ 
x 
kxk 

, 
y 
kxk 

¶ 

+ β 
kyk 
kxk f 

µ 
y 
kyk 

¶¾ 

• Idea: study related operator on functions space of continuous functions 
defined for kxk = 1  

m

m
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Related operator

• Let
X̃ = X ∩ {x : kxk = 1}

• Define T̃ : C
³
X̃
´
→ C

³
X̃
´
as

T̃ f = max
y∈Γ(x)
kxk=1

½
F (x, y) + β kyk f

µ
y

kyk
¶¾

T̃ satifies all our assumptions about bounded returns!

=⇒ T̃ is a contraction of modulus αβ < 1
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Yes, T is a contraction!

• since T̃ is a contraction of modulus αβ < 1

sup
x̃∈X̃

¯̄̄
T̃ f − T̃ g

¯̄̄
≤ αβ sup

x̃∈X̃
|f − g|

• for f ∈ H (X)

T̃ f =
Tf

kxk
(note that f ∈ H (X)

• Thus

sup
x∈X

|Tf − Tg| = kxk sup
x̃∈X̃

¯̄̄
T̃ f − T̃ g

¯̄̄
≤ αβ sup

x̃∈X̃
|f − g| = αβ sup

x∈X
|f − g|

so T is a contraction on H (X)
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Renormalizing

• studying a related operator is convenient in practice
→ reduces dimensionality!

• kxk = 1 not necessarily most convenient normalization ...
• ... another normalization (much used)
if x =

¡
x1, x2

¢ ∈ Rn and x1 ∈ R then use x1 = 1
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Homogenous Returns of Degree θ

similar tricks work (see Alvarez and Stokey, JET)

• rough idea for: θ > 0

F (λx, λy) = λθF (x, y)

|F (x, y)| ≤ B (kxk+ kyk)θ all (x, y) ∈ A

• Γ as before but now α such that γ ≡ βαθ < 1

• a rguments a re exactly pa rallel
• in particular, T is a contraction of modulus γ
• for θ < 0 and θ = 0 several complications with origin...
but they can be surmounted
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Unbounded Returns and Monotonicity

• numerically cannot handle unbounded returns
• idea: T may not be a contraction
but all is not lost: it still is monotonic
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1. Start from v0 ≥ v∗

2. IF Tv0 = v1 ≤ v0 then define vn = Tnv0 (decreasing sequence)

3. IF limn→∞ v0 (xn) ≤ 0 all x ∈ Π (x0) all x0
then clearly vn (x)→ v (x) for all x ∈ X, for some v : X → R̄

4. IF Tv = v (is this implied by vn → v?)

THEN v = v∗

• can be used for quadratic returns

jdas
Theorem 4.14



Unbounded Returns and Monotonicity

Squeezing argument:

1. suppose vL (x) ≤ v∗ (x) ≤ vU (x)
2. and TnvU (x)→ v and TnvU (x)→ v

THEN v = v∗
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Next Class

• we’re done with Chapter 4
• next class: deterministic dynamics
• Chapter 6
• Boldrin-Montruccio 1986 paper
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