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Outline Today’s Lecture 

• continue APS: 
worst and best value 

• Application: Insurance with Limitted Commitment 

• stochastic dynamics 
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B(W) operator 

Definition: For each set W ⊂ R, let B(W ) be the set of possible values 
ω = (1 − δ)r(x, y)+  δω1 associated with some admissible tuples (x, y, ω1, ω2) 
wrt W : 

B(W ) ≡ 

½ 

w : 
∃ (x, y) ∈ C and ω1, ω2 ∈ W s.t. 
(1 − δ)r(x, y) +  δω1 ≥ (1 − δ)r(x, ŷ) +  δω2, ∀ŷ ∈ Y 

¾ 

• note that V is a fixed point B (V ) =  V 

• actually, V is the biggest fixed point 

[fixed point not necessarily unique!] 
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Finding V 
In this simple case here we can do more... 

• lowest v is self-enforcing 

highest v is self-rewarding 

vlow = min 
(x,y)∈C 
v∈V 

{(1 − δ) r (x, y) +  δv} 

(1 − δ)r(x, y) +  δv ≥ (1 − δ)r(x, ŷ) +  δvlow all ŷ ∈ Y 

then 

⇒ vlow = (1 − δ)r(h (y) , y) +  δv ≥ (1 − δ)r(h (y) ,H  (h (y))) + δvlow 

• if binds and v >  vlow then minimize RHS of inequality 

vlow = min 
y 

r(h (y) ,H  (h (y))) 
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Best Value 

• for Best, use Worst to punish and Best as reward 

solve: 
max 

(x,y)∈C 
v∈V 

= {(1 − δ) r (x, y) +  δvhigh} 

(1 − δ)r(x, y) +  δvhigh ≥ (1 − δ)r(x, ŷ) +  δvlow all ŷ ∈ Y 

then clearly vhigh = r (x, y) 

• so 
max r (h (y) , y) 

subject to r (h (y) , y) ≥ (1 − δ)r(h (y) ,H  (h (y))) + δvlow 

• if constraint not binding → Ramsey (first best) 

• otherwise value is constrained by vlow 
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Insurance with Limitted Commitment 

• 2 agents utility u 
¡
cA 
¢ 
and u 

¡
cB 
¢ 

• yA 
t is iid over [ylow , yhigh] 

• yB 
t = ȳ − yA 

t same distribution as yA 
t (symmetry) 

• define 
waut = 

Eu (y) 
1 − β 

• let [wl (y) , wh (y)] be the set of attainable levels of utility for A when 
A has income y (by symmetry it is also that of A with income ȳ − y) 

• v (w, y) for w ∈ [wl, wh] be the highest utility for B given that A is 
promised w and has income y (the pareto frontier) 

Recursive Methods Nr. 6




Recursive Representation

v (w, y) = max
©
u
¡
cB
¢
+ βEv (w0 (y0) , y0)

ª
w = u

¡
cA
¢
+ βEw (y0)

u
¡
cA
¢
+ βEw (y0) ≥ u (y) + βvaut

u
¡
cB
¢
+ βEv (w0 (y0) , y0) ≥ u (ȳ − y) + βvaut

cA + cB ≤ ȳ

w0 (y0) ∈ [wl (y
0) , wh (y

0)]

• is this a contraction? NO
• is it monotonic? YES
• should solve for [wl (y) , wh (y)] jointly

— clearly wl (y) = u (y) + βvaut

— wh (y) such that v (wh (y) , y) = u (ȳ − y) + βvaut
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Stochastic Dynamics

• output of stochastic dynamic programming:
optimal policy:

xt+1 = g (xt, zt)

• convergence to steady state?
on rare occasions (but not necessarily never...)

• convergence to something?
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Notion of Convergence

Idea:

• start at t = 0 with some x0 and s0
• compute x1 = g (x0, z0) → x1 is not uncertain from t = 0 view

• z1 is realized → compute x2 = g (x1, z1)

x2 is random from point of view of t = 0

• continue... x3, x4, x5, ...xt are random variables from t = 0 perspective

• Ft (xt) distribution of xt (given x0, z0)

more generally think of joint distribution of (x, z)

• convergence concept
lim
t→∞Ft (x) = F (x)
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Examples

• stochastic growth model
• Brock-Mirman (δ = 0)

u (c) = log c

f (A, k) = Akα

and At is i.i.d. optimal policy

kt+1 = sAtk
α
t

with s = βα
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Examples

• search model: last recitation
employment state u and e (also wage if we want)

→ invariant distribution gives steady state unemployment rate

• if uncertainty is idiosyncratic in a large population
⇒ F can be interpreted as a cross section
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Bewley / Aiyagari

• income fluctuations problem

v (a, y;R) = max
0≤a0≤Ra+y

{u (Ra+ y − a0) + βE [v (a0, y0;R) |y]}

• solution a0 = g (a, y;R)

• invariant distribution F (a;R)
cross section assets in large population

• how does F vary with R? (continuously?)

• once we have F can compute moments:

market clearing Z
adF (a;R) = K
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Markov Chains

• N states of the world
• let Πij be probability of st+1 = j conditional on st = i

• Π = (Πij) transition matrix
• p distribution over states

• p0 → p1 = Πp0 (why?)→ ...→

pt = Π
tp0

• does Πt converge?
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Examples

• example 1: Πt converges
• example 2: transient state
• example 3: Πt does not converge but flucutates
• example C: ergodic sets
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Theorem

Let S = {s1, ...sl} and Π
a. S can be partitioned into M ergodic sets

b. the sequence µ
1

n

¶ n−1X
k=0

Πk → Q

c. each row of Q is an invariant distribution and so are the convex combinations
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Theorem

Let S = {s1, ...sl} and Π
then Π has a unique ergodic set if and only if there is a state sj such that

for all i there exists an n≥ 1 such that π(n)ij > 0. In this case Π has a unique
invariant distribution p∗; each row of Q equals p∗

Theorem

let εnj = mini π
n
ij and εn =

P
j ε

n
j . Then S has a unique ergodic set with

no cyclical moving subsets if and only if for some N≥ 1 εN > 0. In this case
Πn → Q
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