Recursive Methods

Recursive Methods

Outline Today's Lecture

- continue APS:
worst and best value
- Application: Insurance with Limitted Commitment
- stochastic dynamics

$B(W)$ operator

Definition: For each set $W \subset R$, let $B(W)$ be the set of possible values $\omega=(1-\delta) r(x, y)+\delta \omega_{1}$ associated with some admissible tuples $\left(x, y, \omega_{1}, \omega_{2}\right)$ wrt W :

$$
B(W) \equiv\left\{w: \begin{array}{l}
\exists(x, y) \in C \text { and } \omega_{1}, \omega_{2} \in W \text { s.t. } \\
(1-\delta) r(x, y)+\delta \omega_{1} \geq(1-\delta) r(x, \hat{y})+\delta \omega_{2}, \forall \hat{y} \in Y
\end{array}\right\}
$$

- note that V is a fixed point $B(V)=V$
- actually, V is the biggest fixed point [fixed point not necessarily unique!]

Finding V

In this simple case here we can do more...

- lowest v is self-enforcing highest v is self-rewarding

$$
\begin{gathered}
v_{l o w}=\min _{\substack{(x, y) \in C \\
v \in V}}\{(1-\delta) r(x, y)+\delta v\} \\
(1-\delta) r(x, y)+\delta v \geq(1-\delta) r(x, \hat{y})+\delta v_{l o w} \text { all } \hat{y} \in Y
\end{gathered}
$$

then

$$
\Rightarrow v_{l o w}=(1-\delta) r(h(y), y)+\delta v \geq(1-\delta) r(h(y), H(h(y)))+\delta v_{l o w}
$$

- if binds and $v>v_{l o w}$ then minimize RHS of inequality

$$
v_{\text {low }}=\min _{y} r(h(y), H(h(y)))
$$

Best Value

- for Best, use Worst to punish and Best as reward solve:

$$
\begin{gathered}
\max _{\substack{(x, y) \in C \\
v \in V}}=\left\{(1-\delta) r(x, y)+\delta v_{\text {high }}\right\} \\
(1-\delta) r(x, y)+\delta v_{\text {high }} \geq(1-\delta) r(x, \hat{y})+\delta v_{\text {low }} \text { all } \hat{y} \in Y
\end{gathered}
$$

then clearly $v_{h i g h}=r(x, y)$

- SO

$$
\max r(h(y), y)
$$

subject to $r(h(y), y) \geq(1-\delta) r(h(y), H(h(y)))+\delta v_{\text {low }}$

- if constraint not binding \rightarrow Ramsey (first best)
- otherwise value is constrained by $v_{l o w}$

Insurance with Limitted Commitment

- 2 agents utility $u\left(c^{A}\right)$ and $u\left(c^{B}\right)$
- y_{t}^{A} is iid over [$\left.y_{l o w}, y_{h i g h}\right]$
- $y_{t}^{B}=\bar{y}-y_{t}^{A}$ same distribution as y_{t}^{A} (symmetry)
- define

$$
w_{a u t}=\frac{E u(y)}{1-\beta}
$$

- let $\left[w_{l}(y), w_{h}(y)\right]$ be the set of attainable levels of utility for A when A has income y (by symmetry it is also that of A with income $\bar{y}-y$)
- $v(w, y)$ for $w \in\left[w_{l}, w_{h}\right]$ be the highest utility for B given that A is promised w and has income y (the pareto frontier)

Recursive Representation

$$
\begin{gathered}
v(w, y)=\max \left\{u\left(c^{B}\right)+\beta E v\left(w^{\prime}\left(y^{\prime}\right), y^{\prime}\right)\right\} \\
w=u\left(c^{A}\right)+\beta E w\left(y^{\prime}\right) \\
u\left(c^{A}\right)+\beta E w\left(y^{\prime}\right) \geq u(y)+\beta v_{a u t} \\
u\left(c^{B}\right)+\beta E v\left(w^{\prime}\left(y^{\prime}\right), y^{\prime}\right) \geq u(\bar{y}-y)+\beta v_{a u t} \\
c^{A}+c^{B} \leq \bar{y} \\
w^{\prime}\left(y^{\prime}\right) \in\left[w_{l}\left(y^{\prime}\right), w_{h}\left(y^{\prime}\right)\right]
\end{gathered}
$$

- is this a contraction? NO
- is it monotonic? YES
- should solve for $\left[w_{l}(y), w_{h}(y)\right]$ jointly
- clearly $w_{l}(y)=u(y)+\beta v_{a u t}$
$-w_{h}(y)$ such that $v\left(w_{h}(y), y\right)=u(\bar{y}-y)+\beta v_{a u t}$

Stochastic Dynamics

- output of stochastic dynamic programming: optimal policy:

$$
x_{t+1}=g\left(x_{t}, z_{t}\right)
$$

- convergence to steady state?
on rare occasions (but not necessarily never...)
- convergence to something?

Notion of Convergence

Idea:

- start at $t=0$ with some x_{0} and s_{0}
- compute $x_{1}=g\left(x_{0}, z_{0}\right) \rightarrow x_{1}$ is not uncertain from $t=0$ view
- z_{1} is realized \rightarrow compute $x_{2}=g\left(x_{1}, z_{1}\right)$
x_{2} is random from point of view of $t=0$
- continue... $x_{3}, x_{4}, x_{5}, \ldots x_{t}$ are random variables from $t=0$ perspective
- $F_{t}\left(x_{t}\right)$ distribution of x_{t} (given x_{0}, z_{0})
more generally think of joint distribution of (x, z)
- convergence concept

$$
\lim _{t \rightarrow \infty} F_{t}(x)=F(x)
$$

Examples

- stochastic growth model
- Brock-Mirman $(\delta=0)$

$$
\begin{aligned}
u(c) & =\log c \\
f(A, k) & =A k^{\alpha}
\end{aligned}
$$

and A_{t} is i.i.d. optimal policy

$$
k_{t+1}=s A_{t} k_{t}^{\alpha}
$$

with $s=\beta \alpha$

Examples

- search model: last recitation employment state u and e (also wage if we want)
\rightarrow invariant distribution gives steady state unemployment rate
- if uncertainty is idiosyncratic in a large population
$\Rightarrow F$ can be interpreted as a cross section

Bewley / Aiyagari

- income fluctuations problem

$$
v(a, y ; R)=\max _{0 \leq a^{\prime} \leq R a+y}\left\{u\left(R a+y-a^{\prime}\right)+\beta E\left[v\left(a^{\prime}, y^{\prime} ; R\right) \mid y\right]\right\}
$$

- solution $a^{\prime}=g(a, y ; R)$
- invariant distribution $F(a ; R)$
cross section assets in large population
- how does F vary with R ? (continuously?)
- once we have F can compute moments:
market clearing

$$
\int a d F(a ; R)=K
$$

Markov Chains

- N states of the world
- let $\Pi_{i j}$ be probability of $s_{t+1}=j$ conditional on $s_{t}=i$
- $\Pi=\left(\Pi_{i j}\right)$ transition matrix
- p distribution over states
- $p_{0} \rightarrow p_{1}=\Pi p_{0}$ (why?) $\rightarrow \ldots \rightarrow$

$$
p_{t}=\Pi^{t} p_{0}
$$

- does Π^{t} converge?

Examples

- example 1: Π^{t} converges
- example 2: transient state
- example 3: Π^{t} does not converge but flucutates
- example C: ergodic sets

Theorem
Let $S=\left\{s_{1}, \ldots s_{l}\right\}$ and Π
a. S can be partitioned into M ergodic sets
b. the sequence

$$
\left(\frac{1}{n}\right) \sum_{k=0}^{n-1} \Pi^{k} \rightarrow Q
$$

c. each row of Q is an invariant distribution and so are the convex combinations

Theorem
Let $S=\left\{s_{1}, \ldots s_{l}\right\}$ and Π
then Π has a unique ergodic set if and only if there is a state s_{j} such that for all i there exists an $\mathrm{n} \geq 1$ such that $\pi_{i j}^{(n)}>0$. In this case Π has a unique invariant distribution p^{*}; each row of Q equals p^{*}
Theorem
let $\varepsilon_{j}^{n}=\min _{i} \pi_{i j}^{n}$ and $\varepsilon^{n}=\sum_{j} \varepsilon_{j}^{n}$. Then S has a unique ergodic set with no cyclical moving subsets if and only if for some $N \geq 1 \varepsilon^{N}>0$. In this case $\Pi^{n} \rightarrow Q$

