Recursive Methods

Introduction to Dynamic Optimization

Outline Today's Lecture

- study Functional Equation (Bellman equation) with bounded and continuous ${\cal F}$
- tools: contraction mapping and theorem of the maximum

Bellman Equation as a Fixed Point

• define operator

$$T(f)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta f(y) \right\}$$

• V solution of BE \iff V fixed point of T [i.e. TV = V]

Bounded Returns:

- if ||F|| < B and F and Γ are continuous: T maps continuous bounded functions into continuous bounded functions
- bounded returns $\Rightarrow T$ is a Contraction Mapping \Rightarrow unique fixed point
- many other bonuses

Our Favorite Metric Space

$$S = \left\{ f: X \to R, \ f \text{ is continuous, and } \|f\| \equiv \sup_{x \in X} |f(x)| < \infty \right\}$$

with

$$\rho(f,g) = \|f - g\| \equiv \sup_{x \in X} |f(x) - g(x)|$$

Definition. A linear space S is complete if any Cauchy sequence converges. For a definition of a Cauchy sequence and examples of complete metric spaces see SLP.

Theorem. The set of bounded and continuous functions is Complete. See SLP.

Contraction Mapping

Definition. Let (S,ρ) be a metric space. Let $T:S\to S$ be an operator. T is a contraction with modulus $\beta\in(0,1)$

 $\rho\left(Tx,Ty\right) \le \beta\rho\left(x,y\right)$

for any x, y in S.

Contraction Mapping Theorem

Theorem (CMThm). If T is a contraction in (S, ρ) with modulus β , then (i) there is a unique fixed point $s^* \in S$,

$$s^* = Ts^*$$

and (ii) iterations of T converge to the fixed point

$$\rho\left(T^{n}s_{0},s^{*}\right) \leq \beta^{n}\rho\left(s_{0},s^{*}\right)$$

for any $s_0 \in S$, where $T^{n+1}(s) = T(T^n(s))$.

CMThm – Proof

for (i) **1st step:** construct fixed point s^* take any $s_0 \in S$ define $\{s_n\}$ by $s_{n+1} = Ts_n$ then

$$\rho(s_2, s_1) = \rho(Ts_1, Ts_0) \le \beta \rho(s_1, s_0)$$

generalizing $\rho(s_{n+1}, s_n) \leq \beta^n \rho(s_1, s_0)$ then, for m > n

$$\rho(s_m, s_n) \leq \rho(s_m, s_{m-1}) + \rho(s_{m-1}, s_{m-2}) + \dots + \rho(s_{n+1}, s_n) \\
\leq [\beta^{m-1} + \beta^{m-2} + \dots + \beta^n] \rho(s_1, s_0) \\
\leq \beta^n [\beta^{m-n-1} + \beta^{m-n-2} + \dots + 1] \rho(s_1, s_0) \\
\leq \frac{\beta^n}{1 - \beta} \rho(s_1, s_0)$$

thus $\{s_n\}$ is cauchy. hence $s_n \to s^*$

Introduction to Dynamic Optimization

2nd step: show $s^* = Ts^*$

$$\rho(Ts^*, s^*) \leq \rho(Ts^*, s_n) + \rho(s^*, s_n)$$

$$\leq \beta \rho(s^*, s_{n-1}) + \rho(s^*, s_n) \to 0$$

3nd step: s^* is unique. $Ts_1^* = s_1^*$ and $s_2^* = Ts_2^*$

$$0 \le a = \rho\left(s_1^*, s_2^*\right) = \rho\left(Ts_1^*, Ts_2^*\right) \le \beta\rho\left(s_1^*, s_2^*\right) = \beta a$$

only possible if $a = 0 \Rightarrow s_1^* = s_2^*$. Finally, as for (ii):

 $\rho(T^{n}s_{0}, s^{*}) = \rho(T^{n}s_{0}, Ts^{*}) \leq \beta \rho(T^{n-1}s_{0}, s^{*}) \leq \cdots \leq \beta^{n} \rho(s_{0}, s^{*})$

Corollary. Let S be a complete metric space, let $S' \subset S$ and S' close. Let T be a contraction on S and let $s^* = Ts^*$. Assume that

 $T(S') \subset S'$, i.e. if $s' \in S$, then $T(s') \in S'$

then $s^* \in S'$. Moreover, if $S'' \subset S'$ and

 $T(S') \subset S''$, i.e. if $s' \in S'$, then $T(s') \in S''$

then $s^* \in S''$.

Blackwell's sufficient conditions.

Let S be the space of bounded functions on X, and $\|\cdot\|$ be given by the sup norm. Let $T: S \to S$. Assume that (i) T is monotone, that is,

 $Tf(x) \le Tg(x)$

for any $x \in X$ and g, f such that $f(x) \ge g(x)$ for all $x \in X$, and (ii) T discounts, that is, there is a $\beta \in (0, 1)$ such that for any $a \in R_+$,

$$T\left(f+a\right)\left(x\right) \le Tf\left(x\right) + a\beta$$

for all $x \in X$. Then T is a contraction.

Proof. By definition

$$f = g + f - g$$

and using the definition of $\left\|\cdot\right\|,$

$$f(x) \le g(x) + \|f - g\|$$

then by monotonicity i)

$$Tf \le T\left(g + \|f - g\|\right)$$

and by discounting ii) setting $a = \|f - g\|$

$$Tf \leq T\left(g\right) + \beta \ \left\|f - g\right\|.$$

Reversing the roles of f and g:

$$Tg \le T(f) + \beta \|f - g\|$$
$$\Rightarrow \|Tf - Tg\| \le \beta \|f - g\|$$

Bellman equation application

$$(Tv) (x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

Assume that F is bounded and continuous and that Γ is continuous and has compact range.

Theorem. T maps the set of continuous and bounded functions S into itself. Moreover T is a contraction. **Proof.** That T maps the set of continuos and bounded follow from the Theorem of Maximum (we do this next)

That T is a contraction follows since T satisfies the Blackwell sufficient conditions.

T satisfies the Blackwell sufficient conditions. For monotonicity, notice that for $f \geq v$

$$Tv(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}$$

= $F(x, g(x)) + \beta v(g(x))$
 $\leq \{F(x, g(y)) + \beta f(g(x))\}$
 $\leq \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\} = Tf(x)$

A similar argument follows for discounting: for a > 0

$$T(v+a)(x) = \max_{y \in \Gamma(x)} \left\{ F(x,y) + \beta(v(y)+a) \right\}$$
$$= \max_{y \in \Gamma(x)} \left\{ F(x,y) + \beta v(y) \right\} + \beta a = T(v)(x) + \beta a.$$

Theorem of the Maximum

 $\bullet\,$ want T to map continuous function into continuous functions

$$(Tv)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

• want to learn about optimal policy of RHS of Bellman

$$G(x) = \arg \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

- First, continuity concepts for correspondences
- ... then, a few example maximizations
- ... finally, Theorem of the Maximum

Continuity Notions for Correspondences

assume Γ is non-empty and compact valued (the set $\Gamma(x)$ is non empty and compact for all $x \in X$) **Upper Hemi Continuity (u.h.c.) at** x: for any pair of sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to x$ and $x_n \in \Gamma(y_n)$ there exists a subsequence of $\{y_n\}$ that converges to a point $y \in \Gamma(x)$.

Lower Hemi Continuity (I.h.c.) at x: for any sequence $\{x_n\}$ with $x_n \to x$ and for every $y \in \Gamma(x)$ there exists a sequence $\{y_n\}$ with $x_n \in \Gamma(y_n)$ such that $y_n \to y$.

Continuous at x: if Γ is both upper and lower hemi continuous at x

Max Examples

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$
$$G(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

ex 1: $f(x, y) = xy; X = [-1, 1]; \Gamma(x) = X.$

$$G(x) = \begin{cases} \{-1\} & x < 0\\ [-1,1] & x = 0\\ \{1\} & x > 0 \end{cases}$$
$$h(x) = |x|$$

continued...

Introduction to Dynamic Optimization

Nr. 16

ex 2:
$$f(x, y) = xy^2$$
; $X = [-1, 1]$; $\Gamma(x) = X$

$$G(x) = \begin{cases} \{0\} & x < 0 \\ [-1, 1] & x = 0 \\ \{-1, 1\} & x > 0 \end{cases}$$

$$h(x) = \max\{0, x\}$$

Theorem of the Maximum

Define:

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$

$$G(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

$$= \{y \in \Gamma(x) : h(x) = f(x, y)\}$$

Theorem. (Berge) Let $X \subset \mathbb{R}^l$ and $Y \subset \mathbb{R}^m$. Let $f : X \times Y \to \mathbb{R}$ be continuous and $\Gamma : X \to Y$ be compact-valued and continuous. Then $h : X \to \mathbb{R}$ is continuous and $G : X \to Y$ is non-empty, compact valued, and u.h.c.

$\lim \max \to \max \lim$

Theorem. Suppose $\{f_n(x, y)\}$ and f(x, y) are concave in y and $f_n \to f$ in the sup-norm (uniformly). Define

$$g_n(x) = \arg \max_{y \in \Gamma(x)} f_n(x, y)$$
$$g(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

then $g_n(x) \to g(x)$ for all x (pointwise convergence); if X is compact then the convergence is uniform.

Uses of Corollary of CMThm

Monotonicity of v^* **Theorem.** Assume that $F(\cdot, y)$ is increasing, that Γ is increasing, i.e.

$$\Gamma\left(x\right) \subset \Gamma\left(x'\right)$$

for $x \leq x'$. Then, the unique fixed point v^* satisfying $v^* = Tv^*$ is increasing. If $F(\cdot, y)$ is strictly increasing, so is v^* .

Proof

By the corollary of the CMThm, it suffices to show Tf is increasing if f is increasing. Let $x \leq x'$:

$$Tf(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\}$$

= $F(x, y^*) + \beta f(y^*)$ for some $y^* \in \Gamma(x)$
 $\leq F(x', y^*) + \beta f(y^*)$

since $y^{*} \in \Gamma(x) \subset \Gamma(x')$

$$\leq \max_{y \in \Gamma(x')} \left\{ F(x, y) + \beta f(y) \right\} = Tf(x')$$

If $F\left(\cdot,y
ight)$ is strictly increasing

$$F(x, y^*) + \beta f(y^*) < F(x', y^*) + \beta f(y^*).$$

Concavity (or strict) concavity of v^*

Theorem. Assume that X is convex, Γ is concave, i.e. $y \in \Gamma(x), y' \in \Gamma(x')$ implies that

$$y^{\theta} \equiv \theta y' + (1 - \theta) y \in \Gamma \left(\theta x' + (1 - \theta) x\right) \equiv \Gamma \left(x^{\theta}\right)$$

for any $x, x' \in X$ and $\theta \in (0, 1)$. Finally assume that F is concave in (x, y). Then, the fixed point v^* satisfying $v^* = Tv^*$ is concave in x. Moreover, if $F(\cdot, y)$ is strictly concave, so is v^* .

Differentiability

- can't use same strategy: space of differentiable functions is not closed
- many envelope theorems
- Formula: if h(x) is differentiable and y is interior then

$$h'(x) = f_x(x, y)$$

right value... but is h differentiable?

- one answer (Demand Theory) relies on f.o.c. and assuming twice differentiability of f
- won't work for us since $f = F(x, y) + \beta V(y)$ and we don't even know if f is once differentiable! \rightarrow going in circles

Benveniste and Sheinkman

First a Lemma...

Lemma. Suppose v(x) is concave and that there exists w(x) such that $w(x) \le v(x)$ and $v(x_0) = w(x_0)$ in some neighborhood D of x_0 and w is differentiable at x_0 ($w'(x_0)$) exists) then v is differentiable at x_0 and $v'(x_0) = w'(x_0)$.

Proof. Since v is concave it has at least one subgradient p at x_0 :

$$w(x) - w(x_0) \le v(x) - v(x_0) \le p \cdot (x - x_0)$$

Thus a subgradient of v is also a subgradient of w. But w has a unique subgradient equal to $w'(x_0)$.

Benveniste and Sheinkman

Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in int(X)$ and $g(x_0) \in int(\Gamma(x_0))$ then the fixed point of T, V, is differentiable at x and

$$V'(x) = F_x(x, g(x))$$

Proof. We know V is concave. Since $x_0 \in int(X)$ and $g(x_0) \in int(\Gamma(x_0))$ then $g(x_0) \in int(\Gamma(x))$ for $x \in D$ a neighborhood of x_0 then

$$W(x) = F(x, g(x_0)) + \beta V(g(x_0))$$

and then $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x(x_0, g(x_0))$ so the result follows from the lemma.