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Outline Today’s Lecture 

• study Functional Equation (Bellman equation) with bounded and con-
tinuous F 

• tools: contraction mapping and theorem of the maximum 
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Bellman Equation as a Fixed Point 

• define operator 

T (f ) (x) =  max 
y∈Γ(x) 

{F (x, y) +  βf (y)} 

• V solution of BE ⇐⇒ V fixed point of T [i.e. TV  = V ] 

Bounded Returns: 

• if kF k < B  and F and Γ are continuous: T maps continuous b ounded 
functions into continuous b ounded functions 

• bounded returns ⇒ T is a Contraction Mapping ⇒ unique fixed point 

• many other bonuses 
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Our Favorite Metric Space 

S = 

½ 

f : X → R, f is continuous, and kf k ≡ sup 
x∈X 

|f (x)| < ∞ 

¾ 

with 
ρ (f, g) =  kf − gk ≡ sup 

x∈X 
|f (x) − g (x)| 

Definition. A linear space S is complete if any Cauchy sequence converges. 
For a definition of a Cauchy sequence and examples of complete metric spaces 
see SLP. 
Theorem. The set of b ounded and continuous functions is Complete. See 
SLP. 
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Contraction Mapping 

Definition. Let (S, ρ) be a metric space. Let T : S → S be an operator. T is 
a contraction with modulus β ∈ (0, 1) 

ρ (Tx, T y) ≤ βρ (x, y) 

for any x, y in S. 
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Contraction Mapping Theorem 

Theorem (CMThm). If T is a contraction in (S, ρ) with modulus β, then (i) 
there is a unique fixed point s∗ ∈ S, 

s ∗ = Ts  ∗ 

and (ii) iterations of T converge to the fixed point 

ρ (T ns0, s  ∗ ) ≤ βnρ (s0, s  ∗ )

for any s0 ∈ S, where T n+1 (s) =  T (T n (s)) . 
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CMThm — Proof 

for (i) 1st step: construct fixed point s∗ 

take any s0 ∈ S define {sn} by sn+1 = Tsn then 

ρ (s2, s1) =  ρ (Ts1, T  s0) ≤ βρ (s1, s0) 

generalizing ρ (sn+1, sn) ≤ βnρ (s1, s0) then, for m > n  

ρ (sm, sn) ≤ ρ (sm, sm−1) +  ρ (sm−1, sm−2) +  ... + ρ (sn+1, sn) 

≤ 
£ 
βm−1 + βm−2 + ... + βn

¤ 
ρ (s1, s0) 

≤ βn £ βm−n−1 + βm−n−2 + ... + 1
¤ 
ρ (s1, s0) 

≤ 
βn 

1 − β 
ρ (s1, s0) 

thus {sn} is cauchy. hence sn → s∗ 
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2nd step: show s∗ = Ts∗ 

ρ (Ts∗, s∗) ≤ ρ (Ts∗, sn) +  ρ (s∗, sn) 
≤ βρ (s∗, sn−1) +  ρ (s∗, sn) → 0 

3nd step: s∗ is unique. Ts∗ 1 = s∗ 1 and s∗ 2 = Ts∗ 2 

0 ≤ a = ρ (s∗ 1, s
∗ 
2 ) =  ρ (Ts∗ 1, T  s∗ 2) ≤ βρ (s∗ 1, s

∗ 
2) =  βa 

only possible if a = 0  ⇒ s∗ 1 = s∗ 2. 
Finally, as for (ii): 

ρ (T ns0, s
∗) =  ρ (T ns0, T  s∗) ≤ βρ 

¡
T n−1s0, s∗ 

¢ ≤ · · ·  ≤ βnρ (s0, s
∗) 
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Corollary. Let S be a complete metric space, let S0 ⊂ S and S0 close. Let 
T be a contraction on S and let s ∗ = Ts∗ . Assume that 

T (S0) ⊂ S0 , i.e. if s 0 ∈ S, then T (s 0) ∈ S0 

then s ∗ ∈ S0 . Moreover, if S00 ⊂ S0 and 

T (S0) ⊂ S00 , i.e. if s 0 ∈ S0 , then T (s 0) ∈ S00 

then s ∗ ∈ S00 . 
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Blackwell’s sufficient conditions.
Let S be the space of bounded functions on X, and k·k be given by the sup
norm. Let T : S → S. Assume that (i) T is monotone, that is,

Tf (x) ≤ Tg (x)

for any x ∈ X and g, f such that f (x) ≥ g (x) for all x ∈ X, and (ii) T
discounts, that is, there is a β ∈ (0, 1) such that for any a ∈ R+,

T (f + a) (x) ≤ Tf (x) + aβ

for all x ∈ X. Then T is a contraction.
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Proof. By definition
f = g + f − g

and using the definition of k·k ,

f (x) ≤ g (x) + kf − gk

then by monotonicity i)

Tf ≤ T (g + kf − gk)

and by discounting ii) setting a = kf − gk

Tf ≤ T (g) + β kf − gk .

Reversing the roles of f and g :

Tg ≤ T (f) + β kf − gk

⇒ kTf − Tgk ≤ β kf − gk
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Bellman equation application

(Tv) (x) = max
y∈Γ(x)

{F (x, y) + βv (y)}

Assume that F is bounded and continuous and that Γ is continuous and has
compact range.

Theorem. T maps the set of continuous and bounded functions S into itself.
Moreover T is a contraction.
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Proof. That T maps the set of continuos and bounded follow from the
Theorem of Maximum (we do this next)
That T is a contraction follows since T satisfies the Blackwell sufficient con-
ditions.
T satisfies the Blackwell sufficient conditions. For monotonicity, notice that
for f ≥ v

Tv (x) = max
y∈Γ(x)

{F (x, y) + βv (y)}
= F (x, g (x)) + βv (g (x))

≤ {F (x, g (y)) + βf (g (x))}
≤ max

y∈Γ(x)
{F (x, y) + βf (y)} = Tf (x)

A similar argument follows for discounting: for a > 0

T (v + a) (x) = max
y∈Γ(x)

{F (x, y) + β (v (y) + a)}
= max

y∈Γ(x)
{F (x, y) + βv (y)}+ βa = T (v) (x) + βa.
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Theorem of the Maximum

• wa n t T to map continuous function into continuous functions

(Tv) (x) = max
y∈Γ(x)

{F (x, y) + βv (y)}

• want to learn about optimal policy of RHS of Bellman

G (x) = arg max
y∈Γ(x)

{F (x, y) + βv (y)}

• First, continuity concepts for correspondences
• ... then, a few example maximizations
• ... finally, Theorem of the Maximum

Introduction to Dynamic Optimization Nr. 14



Continuity Notions for Correspondences

assume Γ is non-empty and compact valued (the set Γ (x) is non empty and
compact for all x ∈ X)
Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences {xn} and
{yn} with xn → x and xn ∈ Γ (yn) there exists a subsequence of {yn} that
converges to a point y ∈ Γ (x) .

Lower Hemi Continuity (l.h.c.) at x: for any sequence {xn} with xn → x
and for every y ∈ Γ (x) there exists a sequence {yn} with xn ∈ Γ (yn) such
that yn → y.

Continuous at x: if Γ is both upper and lower hemi continuous at x
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Max Examples

h (x) = max
y∈Γ(x)

f (x, y)

G (x) = arg max
y∈Γ(x)

f (x, y)

ex 1: f (x, y) = xy; X = [−1, 1] ; Γ (x) = X.

G (x) =

 {−1} x < 0
[−1, 1] x = 0
{1} x > 0

h (x) = |x|
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ex 2: f (x, y ) = xy 2 ; X = [−1, 1] ; Γ (x) = X

G (x) =

 {0} x < 0
[−1, 1] x = 0
{−1, 1} x > 0

h (x) = max {0, x}
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Theorem of the Maximum

Define:

h (x) = max
y∈Γ(x)

f (x, y)

G (x) = arg max
y∈Γ(x)

f (x, y)

= {y ∈ Γ (x) : h (x) = f (x, y)}

Theorem. (Berge) Let X ⊂ Rl and Y ⊂ Rm. Let f : X × Y → R be
continuous and Γ : X → Y be compact-valued and continuous. Then h :
X → R is continuous and G : X → Y is non-empty, compact valued, and
u.h.c.
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limmax→ max lim

Theorem. Suppose {fn (x, y)} and f (x, y) are concave in y and fn → f in
the sup-norm (uniformly). Define

gn (x) = arg max
y∈Γ(x)

fn (x, y)

g (x) = arg max
y∈Γ(x)

f (x, y)

then gn (x) → g (x) for all x (pointwise convergence); if X is compact then
the convergence is uniform.
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Uses of Corollary of CMThm

Monotonicity of v∗

Theorem. Assume that F (·, y) is increasing, that Γ is increasing, i.e.

Γ (x) ⊂ Γ (x0)

for x ≤ x0. Then, the unique fixed point v∗ satisfying v∗ = Tv∗ is increasing.
If F (·, y) is strictly increasing, so is v∗.
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Proof

By the corollary of the CMThm, it suffices to show Tf is increasing if f is
increasing. Let x ≤ x0 :

Tf (x) = max
y∈Γ(x)

{F (x, y) + βf (y)}
= F (x, y∗) + βf (y∗) for some y∗ ∈ Γ (x)
≤ F (x0, y∗) + βf (y∗)

since y∗ ∈ Γ (x) ⊂ Γ (x0)

≤ max
y∈Γ(x0)

{F (x, y) + βf (y)} = Tf (x0)

If F (·, y) is strictly increasing

F (x, y∗) + βf (y∗) < F (x0, y∗) + βf (y∗) .
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Concavity (or strict) concavity of v∗

Theorem. Assume that X is convex, Γ is concave, i.e. y ∈ Γ (x) , y0 ∈
Γ (x0) implies that

yθ ≡ θy0 + (1− θ) y ∈ Γ (θx0 + (1− θ)x) ≡ Γ ¡xθ¢
for any x, x0 ∈ X and θ ∈ (0, 1) . Finally assume that F is concave in (x, y).
Then, the fixed point v∗ satisfying v∗ = Tv∗ is concave in x. Moreover, if
F (·, y) is strictly concave, so is v∗.
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Differentiability

• can’t use same strategy: space of differentiable functions is not closed
• many envelope theorems
• Formula: if h (x) is differentiable and y is interior then

h0 (x) = fx (x, y)

right value... but is h differentiable?

• one answer (Demand Theory) relies on f.o.c. and assuming twice differ-
entiability of f

• won’t work for us since f = F (x, y) + βV (y) and we don’t even know
if f is once differentiable! → going in circles
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Benveniste and Sheinkman

First a Lemma...
Lemma. Suppose v (x) is concave and that there exists w (x) such that
w (x) ≤ v (x) and v (x0) = w (x0) in some neighborhood D of x0 and w is
differentiable at x0 (w

0 (x0) exists) then v is differentiable at x0 and v0 (x0) =
w0 (x0).
Proof. Since v is concave it has at least one subgradient p at x0 :

w (x)− w (x0) ≤ v (x)− v (x0) ≤ p · (x− x0)

Thus a subgradient of v is also a subgradient of w. But w has a unique
subgradient equal to w0 (x0 ) . 
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Benveniste and Sheinkman

Now a Theorem
Theorem. Suppose F is strictly concave and Γ is convex. If x0 ∈ int (X)
and g (x0) ∈ int (Γ (x0)) then the fixed point of T, V, is differentiable at x
and

V 0 (x) = Fx (x, g (x))

Proof. We know V is concave. Since x0 ∈ int (X ) and g (x0 ) ∈ int (Γ (x0 ))
then g (x0 ) ∈ int (Γ (x)) for x ∈ D a neighborhood of x0 then

W (x) = F (x, g (x0)) + βV (g (x0))

and t henW (x) ≤ V (x) andW (x0) = V (x0) andW
0 (x0) = Fx (x0, g (x0))

so the r esult f ollows from the lemma. 
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