1 Solutions Pset 3

1) Do some programing
2) Brock Mirman problem
a) Take $V=a_{1} \log k+a_{2} \log \theta+a_{3}$. Then the max problem is

$$
\begin{aligned}
& T V(k)=\max _{0 \leq k^{\prime} \leq A k^{\alpha} \theta} \ln \left(A k^{\alpha} \theta-k^{\prime}\right)+\beta E_{\theta}\left[a_{1} \log k^{\prime}+a_{2} \log \theta+a_{3}\right] \\
& T V(k)=\max _{0 \leq k^{\prime} \leq A k^{\alpha} \theta} \ln \left(A k^{\alpha} \theta-k^{\prime}\right)+\beta a_{1} \log k^{\prime}+\beta a_{2} E_{\theta} \log \theta+\beta a_{3}
\end{aligned}
$$

The FOC condition for this problem is (assuming interior),

$$
-\frac{1}{A k^{\alpha} \theta-k^{\prime}}+\frac{\beta a_{1}}{k^{\prime}}=0
$$

Which implies that

$$
k^{\prime}=\frac{\beta a_{1}}{1+\beta a_{1}} A k^{\alpha} \theta
$$

And

$$
\begin{aligned}
T V(k)= & \ln \left(\frac{1}{1+\beta a_{1}} A k^{\alpha} \theta\right)+\beta a_{1} \log \frac{\beta a_{1}}{1+\beta a_{1}} A k^{\alpha} \theta \\
& +\beta a_{2} E_{\theta} \log \theta+\beta a_{3} \\
= & \alpha\left(1+\beta a_{1}\right) \log k+\left(1+\beta a_{1}\right) \log \theta+ \\
& +\left[\beta a_{1} \log \frac{A \beta a_{1}}{1+\beta a_{1}}+\ln \left(\frac{A}{1+\beta a_{1}}\right)+\beta a_{2} E_{\theta} \log \theta+\beta a_{3}\right]
\end{aligned}
$$

Given that $V(k)=a_{1} \log k+a_{2} \log \theta+a_{3}$, using $V(k)=T V(k)$ we have that

$$
\begin{aligned}
& a_{1}=\alpha\left(1+\beta a_{1}\right) \\
& a_{2}=1+\beta a_{1} \\
& a_{3}=\beta a_{1} \log \frac{A \beta a_{1}}{1+\beta a_{1}}+\ln \left(\frac{A}{1+\beta a_{1}}\right)+\beta a_{2} E_{\theta} \log \theta+\beta a_{3}
\end{aligned}
$$

So,

$$
\begin{aligned}
a_{1} & =\frac{\alpha}{1-\beta \alpha}>0 \\
a_{2} & =\frac{1}{1-\beta \alpha}
\end{aligned}
$$

And a_{3} is given by

$$
a_{3}=\frac{1}{1-\beta}\left[\beta a_{1} \log \frac{A \beta a_{1}}{1+\beta a_{1}}+\ln \left(\frac{A}{1+\beta a_{1}}\right)+\beta a_{2} E_{\theta} \log \theta\right]
$$

The proof that $V=V^{*}$ is done in page 275,276 of SLP.
b) The optimal rule for consumption is then

$$
\begin{aligned}
& c(k, \theta)=A k^{\alpha} \theta-k^{\prime}(k, \theta)= \\
& c(k, \theta)=\frac{1}{1+\beta a_{1}} A k^{\alpha} \theta \\
& c(k, \theta)=(1-\beta \alpha) A k^{\alpha} \theta
\end{aligned}
$$

So, we have that

$$
\frac{\partial c}{\partial \beta}<0
$$

and

$$
\begin{aligned}
\frac{\partial c}{\partial \alpha} & =\alpha(1-\beta \alpha) A k^{\alpha-1} \theta-\beta A k^{\alpha} \theta \\
& =[\alpha(1-\beta \alpha)-\beta k] A k^{\alpha-1} \theta
\end{aligned}
$$

There are two effects, depending on the level of k.
c)

You can do it ex-ante (before the value of θ is realized), then

$$
V(k)=\int\left(\max _{0<k^{\prime} \leq A k^{\alpha} \theta}\left\{\ln \left(A k^{\alpha} \theta-k^{\prime}\right)+\beta V\left[k^{\prime}\right]\right\}\right) h(\theta) d \theta
$$

4)

a) The main conflict is the change in preferences. They value consumption paths differentely because they discount the future in different ways. In particular, time- t self values consumption at time- t versus time- $(t+1)$ more than any time $-\tau$ self with $\tau<t$, as long as $\beta<1$. For $\beta=1$ they all agree.
b) Every self maximizes its utility subject to what other types will do in the future. So,

$$
\begin{equation*}
V\left(k_{0}\right)=\max _{c} u(c)+\delta W\left(k_{1}\right) \tag{1}
\end{equation*}
$$

Where $\delta W(k)$ is the discounted value for todays self of leaving k^{\prime} for the future. So,

$$
W\left(k_{t}\right)=\beta \sum_{i} \delta^{i} u\left(c^{*}\left(k_{t+i}\right)\right)
$$

Where $c^{*}\left(k_{t+i}\right)$ is the optimal consumption rule that future selfs will follow (we are assuming symmetry, and hence c^{*} is time-independent). Now take (??) and do the following :

$$
\begin{aligned}
V\left(k_{0}\right) & =u\left(c_{0}^{*}\right)+\delta W\left(k_{1}\right)=u\left(c_{0}^{*}\right)+\beta \delta \sum_{i} \delta^{i} u\left(c^{*}\left(k_{t+i}\right)\right) \\
V\left(k_{0}\right)-(1-\beta) u\left(c_{0}^{*}\right) & =\beta u\left(c_{0}^{*}\right)+\beta \delta \sum_{i} \delta^{i} u\left(c^{*}\left(k_{t+i}\right)\right) \\
V\left(k_{0}\right)-(1-\beta) u\left(c_{0}^{*}\right) & =W\left(k_{0}\right)
\end{aligned}
$$

So, We can define W recursevly as

$$
\begin{aligned}
W(k) & =V(k)-(1-\beta) u\left(c^{*}(k)\right) \\
W(k) & =\max _{c}\{u(c)+\delta W(f(k)-c)\}-(1-\beta) u\left(c^{*}(k)\right)
\end{aligned}
$$

The T operator is such that $T W(k)=\max _{c}\{u(c)+\delta W(f(k)-c)\}-$ $(1-\beta) u\left(c^{*}(k)\right)$ and we are looking for a fixed point of T.
c) If $\beta=1$, you can easily show that T is a contraction mapping (is monotone and satisfies discounting). This means that there is a unique W that solves the functional equation, and unique Markov equilibrium.
d) If $\beta<1$ the T operator satisfies discounting :

$$
\begin{aligned}
T(W(k)+a) & =\max _{c}\{u(c)+\delta(W(f(k)-c)+a)\}-(1-\beta) u\left(c^{*}(k)\right) \\
& =\max _{c}\{u(c)+\delta W(f(k)-c)\}-(1-\beta) u\left(c^{*}(k)\right)+\delta a \\
& =T W(k)+\delta a
\end{aligned}
$$

It does not however, necessarly satisfies monotonicity. Higher W, might imply higher $c^{*}(k)$ for some capital level, and hence $\max _{c}\{u(c)+\delta(W(f(k)-c)+a)\}-$ $(1-\beta) u\left(c^{*}(k)\right)$ might not increase.
e) If $u=\log c$ and $f=A k^{\alpha}$, then we can do part 3 .

$$
\begin{aligned}
T W(k) & =\max _{c}\{u(c)+\delta W(f(k)-c)\}-(1-\beta) u\left(c^{*}(k)\right) \\
& =\max _{c}\left\{\log c+\delta a \log \left(A k^{\alpha}-c\right)+\delta b\right\}-(1-\beta) u\left(c^{*}(k)\right)
\end{aligned}
$$

$$
\begin{aligned}
c^{*}(k) & : \\
\frac{1}{c} & =\frac{\delta a}{A k^{\alpha}-c} \\
c & =\frac{1}{1+\delta a} A k^{\alpha}
\end{aligned}
$$

So,

$$
\begin{aligned}
T W(k)= & \log \frac{1}{1+\delta a} A k^{\alpha}+\delta a \log \left(A k^{\alpha}-\frac{1}{1+\delta a} A k^{\alpha}\right) \\
& +\delta b-(1-\beta) \log \frac{1}{1+\delta a} A k^{\alpha} \\
= & \log \frac{1}{1+\delta a} A+\alpha \log k+\delta A \log \frac{\delta a}{1+\delta a} A+\alpha \delta a \log k+ \\
& +\delta b-(1-\beta) \log \frac{1}{1+\delta a} A-(1-\beta) \alpha \log k \\
= & \alpha[(1+\delta a)-(1-\beta)] \log k+\delta b+\log \frac{1}{1+\delta a} A \\
& +\delta A \log \frac{\delta a}{1+\delta a} A-(1-\beta) \log \frac{1}{1+\delta a} A
\end{aligned}
$$

So,

$$
a=\frac{\alpha \beta}{1-\alpha \delta}
$$

And you can easily compute b.
The equilibrium consumption policy is then

$$
c=\frac{1-\alpha \delta}{1-\alpha \delta(1-\beta)} A k^{\alpha}
$$

Higher β implies higher consumption (the impatience has decreased).
f) For $\beta=0$ we have that

$$
\tilde{c}=\left(1-\alpha \delta^{e}\right) A k^{\alpha}
$$

So we need $\tilde{\delta}$ to be such that

$$
\frac{1}{1-\alpha \delta(1-\beta)} \beta \delta=\delta^{e}
$$

Now

$$
\delta>\delta^{e}>\beta \delta
$$

given that $\beta<1$.
A hyperbolic consumer looks like an exponential with an appropiate discount rate!!.

Exercise 6.7

a. Actually, Assumption 4.9 is not needed for uniqueness of the optimal capital sequence.

A4.3: $\quad K=[0,1] \subseteq R^{l}$ and the correspondence

$$
\Gamma(k)=\{y: y \in K\}
$$

is clearly compact-valued and continuous.
A4.4: $\quad F(k, y)=(1-y)^{(1-\theta) \alpha} k^{\theta \alpha}$ is clearly bounded in K, and it is also continuous. Also, $0 \leq \beta \leq 1$.

A4.7: \quad Clearly F is continuously differentiable, then

$$
\begin{aligned}
F_{k} & =\theta \alpha(1-y)^{(1-\theta) \alpha} k^{\theta \alpha-1} \\
F_{y} & =-(1-\theta) \alpha(1-y)^{(1-\theta) \alpha-1} k^{\theta \alpha} \\
F_{k k} & =\theta \alpha(1-y)(\theta \alpha-1)^{(1-\theta) \alpha} k^{\theta \alpha-2}<0 \\
F_{y y} & =(1-\theta) \alpha[(1-\theta) \alpha-1](1-y)^{(1-\theta) \alpha-2} k^{\theta \alpha}<0 \\
F_{x y} & =-\theta \alpha(1-\theta) \alpha(1-y)^{(1-\theta) \alpha-1} k^{\theta \alpha-1}<0,
\end{aligned}
$$

and $F_{k k} F_{y y}-F_{x y}^{2}>0$, hence F is strictly concave.
A4.8: \quad Take two arbitrary pairs (k, y) and $\left(k^{\prime}, y^{\prime}\right)$ and $0<\pi<$ 1. Define $k^{\pi}=\pi k+(1-\pi) k^{\prime}, y^{\pi}=\pi y+(1-\pi) y^{\prime}$. Then, since $\Gamma(k)=\{y: 0 \leq y \leq 1\}$ for all k it follows trivially that if $y \in \Gamma(k)$ and $y^{\prime} \in \Gamma\left(k^{\prime}\right)$ then $y^{\pi} \in \Gamma\left(k^{\pi}\right)=\Gamma(k)=\Gamma\left(k^{\prime}\right)=K$.

A4.9: \quad Define $A=K \times K$ as the graph of Γ. Hence F is continuously differentiable because U and f are continuously differentiable. The Euler equation is

$$
\alpha(1-\theta)\left(1-k_{t+1}\right)^{(1-\theta) \alpha-1} k_{t}^{\theta \alpha}=\beta \alpha \theta\left(1-k_{t+2}\right)^{(1-\theta) \alpha} k_{t+1}^{\theta \alpha-1} .
$$

b. Evaluating the Euler equation at $k_{t+1}=k_{t}=k^{*}$, we get

$$
(1-\theta) k^{*}=\beta \theta\left(1-k^{*}\right),
$$

or

$$
k^{*}=\frac{\beta \theta}{1-\theta+\beta \theta} .
$$

c. From the Euler equation, define

$$
\begin{aligned}
& W\left(k_{t}, k_{t+1}, k_{t+2}\right) \\
\equiv & \alpha(1-\theta)\left(1-k_{t+1}\right)^{(1-\theta) \alpha-1} k_{t}^{\theta \alpha} \\
& -\beta \alpha \theta\left(1-k_{t+2}\right)^{(1-\theta) \alpha} k_{t+1}^{\theta \alpha-1} \\
= & 0 .
\end{aligned}
$$

Hence, expanding W around the steady state

$$
\begin{aligned}
W\left(k_{t}, k_{t+1}, k_{t+2}\right)= & W\left(k^{*}, k^{*}, k^{*}\right)+W_{1}\left(k^{*}\right)\left(k_{t}-k^{*}\right) \\
& +W_{2}\left(k^{*}\right)\left(k_{t+1}-k^{*}\right)+W_{3}\left(k^{*}\right)\left(k_{t+2}-k^{*}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
W_{1}\left(k^{*}\right)= & \alpha^{2}(1-\theta) \theta\left(1-k^{*}\right)^{(1-\theta) \alpha-1}\left(k^{*}\right)^{\theta \alpha-1}, \\
W_{2}\left(k^{*}\right)= & -\alpha(1-\theta)[(1-\theta) \alpha-1]\left(1-k^{*}\right)^{(1-\theta) \alpha-2}\left(k^{*}\right)^{\theta \alpha} \\
& -\beta \theta \alpha(\theta \alpha-1)\left(1-k^{*}\right)^{(1-\theta) \alpha}\left(k^{*}\right)^{\theta \alpha-2}, \\
W_{3}\left(k^{*}\right)= & \beta \theta \alpha^{2}(1-\theta)\left(1-k^{*}\right)^{(1-\theta) \alpha-1}\left(k^{*}\right)^{\theta \alpha-1} .
\end{aligned}
$$

Normalizing by $W_{3}\left(k^{*}\right)$ and using the expression obtained for the steady state capital we finally get

$$
\beta^{-1}\left(k_{t}-k^{*}\right)+B\left(k_{t+1}-k^{*}\right)+\left(k_{t+2}-k^{*}\right)=0
$$

where

$$
B=\frac{1-\alpha(1-\theta)}{\alpha(1-\theta)}+\frac{1-\alpha \theta}{\alpha \theta \beta}
$$

That both of the characteristic roots are real comes from the fact that the return function satisfies Assumptions 4.3-4.4 and 4.7-4.9 and it is twice differentiable, so the results obtained in Exercise 6.6 apply.

To see that $\lambda_{1}=\left(\beta \lambda_{2}\right)^{-1}$ it is straightforward from the fact that

$$
\begin{aligned}
\lambda_{1} \lambda_{2} & =\left(\frac{(-B)+\sqrt{B^{2}-4 \beta^{-1}}}{2}\right)\left(\frac{(-B)-\sqrt{B^{2}-4 \beta^{-1}}}{2}\right) \\
& =\frac{(-B)^{2}-\left(B^{2}-4 \beta^{-1}\right)}{4} \\
& =\beta^{-1} .
\end{aligned}
$$

To see that $\lambda_{1}+\lambda_{2}=-B$, just notice that

$$
\lambda_{1}+\lambda_{2}=\frac{(-B)+\sqrt{B^{2}-4 \beta^{-1}}}{2}+\frac{(-B)-\sqrt{B^{2}-4 \beta^{-1}}}{2}=-B .
$$

Then, $\lambda_{1} \lambda_{2}>0$ and $\lambda_{1}+\lambda_{2}<0$ implies that both roots are negative.
In order to have a locally stable steady state k^{*} we need one of the characteristic roots to be less than one in absolute value. Given that both roots are negative, this implies that we need $\lambda_{1}>-1$, or

$$
-B+\sqrt{B^{2}-4 \beta^{-1}}>-2
$$

which after some straightforward manipulation implies

$$
B>\frac{1+\beta}{\beta} .
$$

Substituting for B we get

$$
\frac{1-\theta+\theta \beta}{2 \theta(1+\beta)(1-\theta)}>\alpha
$$

or equivalently

$$
\beta>\frac{(2 \theta \alpha-1)(1-\theta)}{[1-2 \alpha(1-\theta)] \theta} .
$$

d. To find that $k^{*}=0.23$, evaluate the equation for k^{*} obtained in b. at the given parameter values. To see that k^{*} is unstable, evaluate λ_{1} at the given parameter values. Notice also that those parameter values do not satisfy the conditions derived in c .
e. Note that since F is bounded, the two-cycle sequence satisfies the transversality conditions

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} \beta^{t} F_{1}(x, y) \cdot x=0 \quad \text { and } \\
& \lim _{t \rightarrow \infty} \beta^{t} F_{1}(x, y) \cdot y=0
\end{aligned}
$$

for any two numbers $x, y \in[0,1], x \neq y$. Hence, by Theorem 4.15, if the two cycle (x, y) satisfies

$$
\begin{aligned}
& F_{y}(x, y)+\beta F_{x}(y, x)=0 \quad \text { and } \\
& F_{y}(y, x)+\beta F_{x}(x, y)=0
\end{aligned}
$$

it is an optimal path.
Conversely, if (x, y) is optimal and the solution is interior, then it satisfies

$$
\begin{aligned}
& F_{y}(x, y)+\beta v^{\prime}(y)=0 \quad \text { and } \quad v^{\prime}(y)=F_{x}(y, x), \\
& F_{y}(y, x)+\beta v^{\prime}(x)=0 \quad \text { and } \quad v^{\prime}(x)=F_{x}(x, y),
\end{aligned}
$$

and hence it satisfies the Euler equations stated in the text.
Notice that the pair (x, y) defining the two-cycle should be restricted to the open interval $(0,1)$.
f. We have that

$$
\begin{aligned}
F_{y}(x, y)+\beta F_{x}(y, x)= & \beta \alpha \theta y^{\alpha \theta-1}(1-x)^{\alpha(1-\theta)} \\
& -\alpha(1-\theta) x^{\alpha \theta}(1-y)^{\alpha(1-\theta)-1},
\end{aligned}
$$

and

$$
\begin{aligned}
F_{y}(y, x)+\beta F_{x}(x, y)= & \beta \alpha \theta x^{\alpha \theta-1}(1-y)^{\alpha(1-\theta)} \\
& -\alpha(1-\theta) y^{\alpha \theta}(1-x)^{\alpha(1-\theta)-1}
\end{aligned}
$$

wrong numbers

The pair (29, 0.18) zero, and from the result proved in part e. we already know this is a necessary and sufficient condition for the pair to be a two-cycle.
g. Define

$$
\begin{aligned}
E^{1}\left(k_{t}, k_{t+1}, k_{t+2}, k_{t+3}\right) \equiv & -\alpha(1-\theta) k_{t+1}^{\alpha \theta}\left(1-k_{t+2}\right)^{\alpha(1-\theta)-1} \\
& +\beta \alpha \theta k_{t+2}^{\alpha \theta-1}\left(1-k_{t+3}\right)^{\alpha(1-\theta)} \\
= & -\alpha(1-\theta) x^{\alpha \theta}(1-y)^{\alpha(1-\theta)-1} \\
& +\beta \alpha \theta y^{\alpha \theta-1}(1-x)^{\alpha(1-\theta)} \\
= & 0 \\
E^{2}\left(k_{t}, k_{t+1}, k_{t+2}, k_{t+3}\right) \equiv & -\alpha(1-\theta) k_{t}^{\alpha \theta}\left(1-k_{t+1}\right)^{\alpha(1-\theta)-1} \\
& +\beta \alpha \theta k_{t+1}^{\alpha \theta-1}\left(1-k_{t+2}\right)^{\alpha(1-\theta)} \\
= & -\alpha(1-\theta) y^{\alpha \theta}(1-x)^{\alpha(1-\theta)-1} \\
& +\beta \alpha \theta x^{\alpha \theta-1}(1-y)^{\alpha(1-\theta)} \\
= & 0
\end{aligned}
$$

Let E_{i}^{j} be the derivative of E^{j} with respect to the $i^{t h} \operatorname{argument}$. Then, the derivatives are

$$
\begin{aligned}
E_{1}^{1}= & 0 \\
E_{2}^{1}= & -\alpha^{2} \theta(1-\theta) x^{\alpha \theta-1}(1-y)^{\alpha(1-\theta)-1}, \\
E_{3}^{1}= & -\alpha(1-\theta) x^{\alpha \theta}[\alpha(1-\theta)-1](1-y)^{\alpha(1-\theta)-2} \\
& +\beta \alpha \theta(\alpha \theta-1) y^{\alpha \theta-2}(1-x)^{\alpha(1-\theta)}, \\
E_{4}^{1}= & \beta \alpha \theta y^{\alpha \theta-1}(1-x)^{\alpha(1-\theta)-1}, \\
E_{1}^{2}= & -\alpha^{2} \theta(1-\theta) y^{\alpha \theta-1}(1-x)^{\alpha(1-\theta)-1}, \\
E_{2}^{2}= & -\alpha(1-\theta) y^{\alpha \theta}[\alpha(1-\theta)-1](1-x)^{\alpha(1-\theta)-2} \\
& +\beta \alpha \theta(\alpha \theta-1) x^{\alpha \theta-2}(1-y)^{\alpha(1-\theta)}, \\
E_{3}^{2}= & \beta \alpha \theta x^{\alpha \theta-1}(1-y)^{\alpha(1-\theta)-1}, \\
E_{4}^{2}= & 0 .
\end{aligned}
$$

Using the fact that $k_{t+2}=k_{t}$ in E_{1}, expand this system around (0.29,0.18). Denoting by \hat{K} deviations around the stationary point \bar{K}, we can express the linearized system as

$$
\hat{K}_{t / 2+1}=\left[\begin{array}{c}
\hat{k}_{t+3} \\
\hat{k}_{t+2}
\end{array}\right]=\hat{H}\left[\begin{array}{c}
\hat{k}_{t+1} \\
\hat{k}_{t}
\end{array}\right]=\hat{H} \hat{K}_{t / 2}
$$

where

$$
\hat{H}=\left[\begin{array}{cc}
E_{4}^{1} & 0 \\
0 & E_{3}^{2}
\end{array}\right]^{-1}\left[\begin{array}{cc}
E_{2}^{1} & E_{1}^{1} \\
E_{2}^{2} & E_{1}^{2}
\end{array}\right] \begin{aligned}
& \text { evaluate this to } \square \\
& \text { get stability }
\end{aligned}
$$

