## Recursive Methods

Recursive Methods
Nr. 1

## Outline Today's Lecture

- Dynamic Programming under Uncertainty notation of sequence problem
- leave study of dynamics for next week
- Dynamic Recursive Games: Abreu-Pearce-Stachetti
- Application: today's Macro seminar


## Dynamic Programming with Uncertainty

- general model of uncertainty: need Measure Theory
- for simplicity: finite state $S$
- Markov process for $s$ (recursive uncertainty)

$$
\begin{array}{cc}
\operatorname{Pr}\left(s_{t+1} \mid s^{t}\right)=p\left(s_{t+1} \mid s_{t}\right) \\
v^{*}\left(x_{0}, s_{0}\right) \equiv & \\
\sup _{\left\{x_{t+1}(\cdot)\right\}_{t=0}^{\infty}} & \left\{\sum_{t} \sum_{s^{t}} \beta^{t} F\left(x_{t}\left(s^{t-1}\right), x_{t+1}\left(s^{t}\right)\right) \operatorname{Pr}\left(s^{t} \mid s_{0}\right)\right\} \\
& x_{t+1}\left(s^{t}\right) \in \Gamma\left(x_{t}\left(s^{t-1}\right)\right) \\
& x_{0} \text { given }
\end{array}
$$

## Dynamic Programming

Functional Equation (Bellman Equation)

$$
v(x, s)=\sup \left\{F(x, y)+\beta \sum_{s^{\prime}} v\left(y, s^{\prime}\right) p\left(s^{\prime} \mid s\right)\right\}
$$

or simply (or more generally):

$$
v(x, s)=\sup \left\{F(x, y)+\beta E\left[v\left(y, s^{\prime}\right) \mid s\right]\right\}
$$

where the $E[\cdot \mid s]$ is the conditional expectation operator over $s^{\prime}$ given $s$

- basically same: Ppple of Optimality, Contraction Mapping (bounded case), Monotonicity [actually: differentiability sometimes easier!]
- notational gain is huge!


## Policy Rules Rule

- more intuitive too!
- fundamental change in the notion of a solution

| optimal policy $g(x, s)$ |
| :---: |
| vs. |
| optimal sequence of contingent plan $\left\{x_{t+1}\left(s^{t}\right)\right\}_{t=0}^{\infty}$ |

- Question: how can we use $g$ to understand the dynamics of the solution? (important for many models)
- Answer: next week...


## Abreu Pearce and Stachetti (APS)

- Dynamic Programming for Dynamic Games
- idea: subgame perfect equilibria of repeated games have recursive structure
$\rightarrow$ players care about future strategies only through their associated utility values
- APS study general N person game with non-observable actions
- we follow Ljungqvist-Sargent:
continuum of identical agents vs. benevolent government
- time consistency problems (credibility through reputation)
- agent $i$ has preferences $u\left(x_{i}, x, y\right)$ where $x$ is average across $x_{i}$ 's


## One Period

- competitive equilibria:

$$
C=\left\{(x, y): x \in \arg \max _{x_{i}} u\left(x_{i}, x, y\right)\right\}
$$

assume $x=h(y)$ for all $(x, y) \in C$

1. Dictatorial allocation: $\max _{x, y} u(x, x, y)$ (wishful thinking!)
2. Ramsey commitment allocation: $\max _{(x, y) \in C} u(x, x, y)$ (wishful think ing?)
3. Nash equilibrium $\left(x^{N}, y^{N}\right)$ : (might be bad outcome)

$$
\begin{aligned}
& x^{N} \in \arg \max _{x} u\left(x, x^{N}, y^{N}\right) \Leftrightarrow\left(x^{N}, y^{N}\right) \in C \\
& y^{N} \in \arg \max _{y} u\left(x^{N}, x^{N}, y\right) \Leftrightarrow y^{N}=H\left(x^{N}\right)
\end{aligned}
$$

## Kydland-Prescott / Barro-Gordon

$$
\begin{gathered}
v(u, \pi)=-u^{2}-\pi^{2} \\
u=\bar{u}-\left(\pi-\pi^{e}\right) \\
u\left(\pi_{i}^{e}, \pi^{e}, \pi\right)=v\left(\bar{u}-\left(\pi-\pi^{e}\right), \pi\right)-\lambda\left(\pi_{i}^{e}-\pi\right)^{2} \\
=-\left(\bar{u}-\left(\pi-\pi^{e}\right)\right)^{2}-\pi^{2}-\lambda\left(\pi_{i}^{e}-\pi\right)^{2}
\end{gathered}
$$

then $\pi_{i}^{e}=\pi^{e}=\pi=h(\pi)$ take $\lambda \rightarrow 0$ then

$$
-\left(\bar{u}-\pi+\pi^{e}\right)^{2}-\pi^{2}
$$

- First best Ramsey:

$$
\begin{aligned}
\max _{\pi}\left\{-(\bar{u}-\pi+h(\pi))^{2}-\pi^{2}\right\} & =\max _{\pi}\left\{-(\bar{u})^{2}-\pi^{2}\right\} \\
& \rightarrow \quad \pi^{*}=0
\end{aligned}
$$

## Kydland-Prescott / Barro-Gordon

- Nash outcome. Gov't optimal reaction:

$$
\begin{gathered}
\max _{\pi}\left\{-\left(\bar{u}-\pi+\pi^{e}\right)^{2}-\pi^{2}\right\} \\
\pi=\frac{\bar{u}+\pi^{e}}{2}
\end{gathered}
$$

this is $\pi=H\left(\pi^{e}\right)$

- Nash equilibria is then $\pi=H(h(\pi))=H(\pi)=\frac{\bar{u}+\pi}{2}$ which implies

$$
\pi^{e N}=\pi^{N}=\bar{u}
$$

$\rightarrow$ unemployment stays at $\bar{u}$ but positive inflation $\Rightarrow$ worse off

- Andy Atkeson: adds shock $\theta$ that is private info of gov't (macro seminar)


## Infinitely Repeated Economy

- Payoff for government:

$$
V_{g}=\frac{1-\delta}{\delta} \sum_{t=1}^{\infty} \delta^{t} r\left(x_{t}, y_{t}\right)
$$

where $r(x, y)=u(x, x, y)$

- strategies $\sigma \ldots$

$$
\begin{aligned}
\sigma_{g} & =\left\{\sigma_{t}^{g}\left(x^{t-1}, y^{t-1}\right)\right\}_{t=0}^{\infty} \\
\sigma_{h} & =\left\{\sigma_{t}^{h}\left(x^{t-1}, y^{t-1}\right)\right\}_{t=0}^{\infty}
\end{aligned}
$$

- induce $\left\{x_{t}, y_{t}\right\}$ from which we can write $V_{g}(\sigma)$.
- continuation stategies: after history $\left(x^{t}, y^{t}\right)$ we write $\left.\sigma\right|_{\left(x^{t}, y^{t}\right)}$


## Subgame Perfect Equilibrium

- A strategy profile $\sigma=\left(\sigma^{h}, \sigma^{g}\right)$ is a subgame perfect equilibrium of the infinitely repeated economy if for each $t \geq 1$ and each history $\left(x^{t-1}, y^{t-1}\right) \in X^{t-1} \times Y^{t-1}$,

1. The outcome $x_{t}=\sigma_{t}^{h}\left(x^{t-1}, y^{t-1}\right)$ is a competitive equilibrium given that $y_{t}=\sigma_{t}^{g}\left(x^{t-1}, y^{t-1}\right)$, i.e. $\left(x_{t}, y_{t}\right) \in C$
2. For each $\hat{y} \in Y$
$(1-\delta) r\left(x_{t}, y_{t}\right)+\delta V_{g}\left(\left.\sigma\right|_{\left(x^{t}, y^{t}\right)}\right) \geq(1-\delta) r\left(x_{t}, \hat{y}\right)+\delta V_{g}\left(\left.\sigma\right|_{\left(x^{t} ; y^{t}-1, \hat{y}\right)}\right)$
(one shot deviations are not optimal)

## Lemma

Take $\sigma$ and let $x$ and $y$ be the associated first period outcome. Then $\sigma$ is sub-game perfect if and only if:

1. for all $(\hat{x}, \hat{y}) \in X \times\left. Y \sigma\right|_{\hat{x}, \hat{y}}$ is a sub-game perfect equilibrium
2. $(x, y) \in C$
3. $\hat{y} \in Y$

$$
(1-\delta) r\left(x_{t}, y_{t}\right)+\delta V_{g}\left(\left.\sigma\right|_{(x, y)}\right) \geq(1-\delta) r\left(x_{t}, \hat{y}\right)+\delta V_{g}\left(\left.\sigma\right|_{(\hat{x}, \hat{y})}\right)
$$

- note the stellar role of $V_{g}\left(\left.\sigma\right|_{(x, y)}\right)$ and $V_{g}\left(\left.\sigma\right|_{(\hat{x}, \hat{y})}\right)$, its all that matters for checking whether it is best to do $x$ or deviate...
- idea! think about values as fundamental


## Values of all SPE

- Set $V$ of values

$$
V=V_{g}(\sigma) \mid \sigma \text { is a subgame perfect equilibrium }
$$

- Let $W \subset R$. A 4-tuple $\left(x, y, \omega_{1}, \omega_{2}\right)$ is said to be admissible with respect to $W$ if $(x, y) \in C, \omega_{1}, \omega_{2} \in W \times W$ and

$$
(1-\delta) r(x, y)+\delta \omega_{1} \geq(1-\delta) r(x, \hat{y})+\delta \omega_{2}, \forall \hat{y} \in Y
$$

## $B(W)$ operator

Definition: For each set $W \subset R$, let $B(W)$ be the set of possible values $\omega=(1-\delta) r(x, y)+\delta \omega_{1}$ associated with some admissible tuples $\left(x, y, \omega_{1}, \omega_{2}\right)$ wrt $W$ :

$$
B(W) \equiv\left\{w: \begin{array}{l}
\exists(x, y) \in C \text { and } \omega_{1}, \omega_{2} \in W \text { s.t. } \\
(1-\delta) r(x, y)+\delta \omega_{1} \geq(1-\delta) r(x, \hat{y})+\delta \omega_{2}, \forall \hat{y} \in Y
\end{array}\right\}
$$

- note that $V$ is a fixed point $B(V)=V$
- we will see that $V$ is the biggest fixed point
- Monotonicity of B. If $W \subset W^{\prime} \subset R$ then $B(W) \subset B\left(W^{\prime}\right)$
- Theorem (self-generation): If $W \subset R$ is bounded and $W \subset B(W)$ (self-generating) then $B(W) \subset V$
- Proof
- Step 1: for any $W \in B(W)$ we can choose and $x, y, \omega_{1}$, and $\omega_{2}$

$$
(1-\delta) r(x, y)+\delta \omega_{1} \geq(1-\delta) r(x, \hat{y})+\delta \omega_{2}, \forall \hat{y} \in Y
$$

- Step 2: for $\omega_{1}, \omega_{2} \in W$ thus do the same thing for them as in step 1
continue in this way...


## Three facts and an Algorithm

- $V \subset B(V)$
- If $W \subset B(W)$, then $B(W) \subset V$ (by self-generation)
- $B$ is monotone and maps compact sets into compact sets
- Algorithm: start with $W_{0}$ such that $V \subset B\left(W_{0}\right) \subset W_{0}$ then define $W_{n}=B^{n}\left(W_{0}\right)$

$$
W_{n} \rightarrow V
$$

Proof: since $W_{n}$ are decreasing (and compact) they must converge, the limit must be a fixed point, but $V$ is biggest fixed point

## Finding $V$

In this simple case here we can do more...

- lowest $v$ is self-enforcing
highest $v$ is self-rewarding

$$
\begin{gathered}
v_{l o w}=\min _{\substack{(x, y) \in C \\
v \in V}}\{(1-\delta) r(x, y)+\delta v\} \\
(1-\delta) r(x, y)+\delta v \geq(1-\delta) r(x, \hat{y})+\delta v_{\text {low }} \text { all } \hat{y} \in Y \\
\Rightarrow v_{\text {low }}=(1-\delta) r(h(y), y)+\delta v \geq(1-\delta) r(h(y), H(h(y)))+\delta v_{\text {low }}
\end{gathered}
$$

- if binds and $v>v_{\text {low }}$ then minimize RHS of inequality

$$
v_{\text {low }}=\min _{y} r(h(y), H(h(y)))
$$

## Best Value

- for Best, use Worst to punish and Best as reward solve:

$$
\begin{gathered}
\max _{\substack{(x, y) \in C \\
v \in V}}=\left\{(1-\delta) r(x, y)+\delta v_{\text {high }}\right\} \\
(1-\delta) r(x, y)+\delta v_{\text {high }} \geq(1-\delta) r(x, \hat{y})+\delta v_{\text {low }} \text { all } \hat{y} \in Y
\end{gathered}
$$

then clearly $v_{h i g h}=r(x, y)$

- SO

$$
\max r(h(y), y)
$$

subject to $r(h(y), y) \geq(1-\delta) r(h(y), H(h(y)))+\delta v_{\text {low }}$

- if constraint not binding $\rightarrow$ Ramsey (first best)
- otherwise value is constrained by $v_{l o w}$

