
Problem Set 1


1 Answers to the required problems 

3.2 
a) Take any three vectors x, y, z in Rl and two real number α, β ∈ R. 

Define the zero vector θ = (0, .., 0) ∈ Rl . To check that it is a vector space, 
define the sum of two vectors as the vector of the sum element by element; and 
the scalar multiplication as the multiplication of every element by an scalar. 
It is trivial to check that this operations are closed in a finite dimesional 
Rl. It is not very difficult then to check conditions a to h of the definition 
of a real vector space in page 43 of SLP by using the element by element 
operations. For example for property c we have that 

α (x + y) =  α (x1 + y1, ..., xl + yl) = (αx1 + αy1, ..., αxl + αyl) 

= αx + αy 

b) Straigthforward extension of part a) 
c) Define the addition of two sequences as the element by element addi-

tion, and scalar multiplication as the multiplication of every element by the 
same real number. Then proceed as in part a. 
d) Take f, g : [a, b] → R and α ∈ R. Let θ (x) = 0. Define the addi-

tion of functions by (f + g) (x) =  f (x) +  g (x), and scalar multiplication 
by (αf ) (x) =  αf (x). A function f is continuous if xn → x implies that 
f (xn) → f (x). To see that f + g is continuous, take a sequence xn → x in 
[a, b]. Then 

lim f (xn) +  g (xn) =  f (x) +  g (x) = (f + g) (x)(f + g) (xn) = lim 
xn →xxn →x 

Now you can proceed as in part c, checking that the properties are defined 
for every point of the function. 
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e) Take the vectors (0, 1) and (1, 0). Then (1, 0)+ (0, 1) is not in the unit 
circle. 
f) Choose α ∈ (0, 1). Then 1 ∈ I but α1 6∈ I. Violates the definition of 

vector space 
g) Let f : [a, b] → R+. Take α <  0, then αf ≤ 0, so does not belong to 

the set of nonnegative functions. 

3.3. 
a) Take three different integers x, y,and z. The non-negative property 

holds trivially for the absolute value. Also 

ρ (x, y) =  |x − y| = |y − x| = ρ (y, x) 

Finally 

ρ(x, y) =  |x − y| ≤ |x − z| + |z − y| ≤ ρ (x, z) +  ρ (z, y) 

b) First, ρ (x, y) ≥ 0, and with equality only when x = y. It is also true 
that ρ (x, y) =  ρ (y, x). 
Finally to show that ρ (x, y) ≤ ρ(x, z) +  ρ(z, y), notice that you have to 

consider three cases, when z = y, z = x and when z 6∈ {x, y}. For the first 
two cases the triangle inequality holds with equality. For the last one it holds 
with inequality ρ (x, y) < 2 for all x, y. 
c) Take three functions x (t) , y  (t), and z (t). The first two properties 

of the metric are immediate from the definition of absolute value. Notice 
also that x, y continuous in [a, b] implies that the functions are bounded. 
The proposed metric is then real valued (not extended real). To prove the 
triangle inequality let 

ρ (x, z) =  
t∈[a,b] 

|x (t) − z (t)| = maxmax 
t∈[a,b] 

|x (t) − y (t) +  y (t) − z (t)| 
≤ max 

t∈[a,b] 
{|x (t) − y (t)| + |y (t) − z (t)|} 

≤ 
t∈[a,b] 

|x (t) − y (t)| + maxmax 
t∈[a,b] 

|y (t) − z (t)| = ρ (x, y) +  ρ (y, z) 

d) Very similar to c. 
e) Similar to a. 
f) The first two properties come from the absolute value plus f (0) = 0, 

and f is strictly increasing (there is only one zero). 
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To see the triangle inequality, let 

ρ (x, y) =  f (|x − y|) =  f (|x − z + z − y|) 

By strictlt increasing f we have 

f (|x − z + z − y|) ≤ f (|x − z| + |z − y|) 

And by concavity we have 

f (|x − z| + |z − y|) ≤ f (|x − z|) +  f (|z − y|) =  ρ (x, z) +  ρ (z, y) 

3.4. 
a) The norm is non-negative comes from the definition of the square root 

of sum of squares. The second one, ||αx|| = |α| ||x||, is implied by X X 
2||αx||2 = (αxi)

2 = α2 xi = α2 ||x|| 

To prove the triangle inequality we follow :  

X X X X 
2||x + y||2 = (xi + yi)

2 = xi + 2  xiyi + yi 
2 

P P P 
By Cauchy-Schwartz we have that xiyi ≤ [( x2 

i ) (  yi 
2)]

1/2 
so X X X X h³X ´³X ´i1/2 X 

2 2 2 2 2 2 xi + 2  xiyi + yi ≤ xi + 2  xi yi + yi 

= ||x||2 + 2  ||x|| ||y|| + ||y||2 = (||x|| + ||y||)2 

This implies that ||x + y|| ≤ ||x|| + ||y||. 
b),c) are very similar exploiting the absolute value properties. 

d) The proposed norm is non-negative and is real valued (bounded se-
quences). The first property, notice that ||x|| = 0 only if for all k, xk = 0. 
The second property we have ||αx|| = supk |αxk | = |α| supk |xk| = |a| ||x||. 
For the triangle inequality we have 

||x + y|| = sup (|xk + yk |) ≤ sup (|xk| + |yk|) ≤ sup |xk| + sup |yk|
k k k k 

= ||x|| + ||y|| 
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e) Proceed as in part d. 
f) Proceed as in part d. 
3.5. 
a) By the triangle inequality we know that 

ρ (x, y) ≤ ρ (xn, x) +  ρ (xn, y) 

given that xn → x, and xn → y, the right hand side can be made as small 
as wanted, implying that ρ (x, y) = 0  and x = y. 
b) If xn → x, then for any ε, we can find N such that ρ (xn1 , x) < ε/2 

for n1 > N  . The distance between to xn1 and xn2 with n2 > N  is then 
ρ (xn1 , xn2 ) ≤ ρ (xn1 , x) +  ρ (xn2 , x) =  ε for all n1, n2 > N  . (which is the 
Cauchy definition). 
c) Pick an ε, then there exists an N such that for n1 > N  we have that 

ρ (xn1 , xn2 ) < ε. Then ρ (xn1 , 0) ≤ ρ (xn1 , xN ) +  ρ (xN , 0) = ε + ρ (xN , 0). Let 
M = maxn<N {ρ (xn, 0)}. So we have then that for all n, 

ρ (xn, 0) ≤ max{ε + ρ (xN , 0) ,M  } < ∞ for all n 

so the sequence is bounded. 
d) The fact that xn → x implies that every subsequence converges is easy. 

To show that if every subsequence converges to x, then {xn} converges to x 
we need to show that if xn does not converge to x, then there is a subsequence 
that does not converge to x. We can construct such a sequence by showing 
that if {xn} does not converge, for any ε, and for any N1 we can find an 
k1 > N  such that |xk1 − x| > ε. Let N2 > k1 and can find a k2 such that 
|xk2 − x| > ε  and so on ,  and construct a sequence of {xki } that is always 
bounded away from x by ε. 

3.6. 
a) The metric in 3.3a is complete. Just choose ε <  1, such that |xn − xm| < 

ε = 1. This implies that xn = xm = x. Where x is the limit of the sequence. 
The 3.3b metric is similar. 
The metric in 3.4a is complete. To show that, notice that if {xn} is a 

Cauchy sequence under the norm, then each of the kth elements of xn are 
also a Cauchy sequence. Given that the real line is complete, each sequence 
of kth elements converges to some xk . Define P 

x = 
¡
x1 , ..., xk 

¢ 
. Compute the 

distance from xn to x. This is ρ (xn, x)
2 = (xi n − xi)2 

. Given that every 
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¡ ¡¡

xi → xi, then ρ (xn, x)
2 → 0 which proves the limit result. The metric inn 

3.4b and 3.4c is similar. 
For 3.4d. Let xk be the kth element of the n sequence. The fact©thatn ª 

a sequence of sequences is Cauchy (under ªthe norm) implies that xk © n 

is Cauchy as well. This implies that xk converges to some xk. Letn 

x = {x1, x2 , ....}. ©It is easy to see that ρ (xn, x) ≤ ρ (xn, xm) +  ρ (xm, x) ≤ 
ρ (xn, xm) + supk ρ 

¡
xk 

¢ª 
. Given that xk → xk and {xn} is Cauchy, wem, x

k
m 

can make the left hand side of the inequality as small as possible, implying 
that ρ (xn, x) → x. 
3.4.e. The proof was done in class for more general space. 
The 3.3c is not complete. Just analyze the limit of for example xn (t) =  

1 +  ant as an → 0 with an > 0. This limit is just xn (t) = 1, which is not 
strictly increasing. 
3.3e is not complete: rational sequences can converge to irrational num-

bers. 
In 3.4.f, just think of the counter example for a = 0,b = 1 and xn (t) =  tn . 

In this case, ρ (xn, xm) → 0, but the limit of xn (t) is discountinuos at t = 0. 
For the case of 3.3.c replacing with ”non-decreasing” we can construct 

the limit function point by point as before. Now, we have to show that the 
limit function is non-decreasing, to do that suppose that is not, that the 
Cauchy sequence of {fn} converges to f ,  but for some t0 > t  we have that 
f (t) − f (t0) > ε. Then 

0 < ε < f (t) − f (t0) =  f (t) − fn (t) + [fn (t) − fn (t
0)] + fn (t

0) − f (t0) 

≤ 2 ||f − fn|| + fn (t) − fn (t
0) 

Given that f → fn , it has to be the case that fn (t) − fn (t
0) > ε, a  

contradiction of non-decreasing property of fn. 
b) Since S0 is closed in S, any convergent sequence in S0 converges in 

S0 . Given that any Cauchy sequence in S converges in S (by completeness), 
implies that any Cauchy sequence in S0 converges, and hence converges in 
S0 . 

3.9. See that ¢ ¢ 
ρ (T n v0, v) ≤ ρ T n v0, T  n+1 v0 + ρ T n+1 v0, v  = 

= ρ T n v0, T  n+1 v0 

¢ 
+ ρ 

¡
T n+1 v0, Tv 

¢ 
≤ ρ 

¡
T n v0, T  n+1 v0 

¢ 
+ βρ (T n v0, Tv) 
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Rearranging term we get the inequility we need. 

3.13. 
a) Same as part b. with f (x) =  x. 
b) Choose any x. Since 0 ∈ Γ (x), Γ (x) is non-empty. Choose any 

y ∈ Γ (x) and consider the sequence xn → x. Let γ ≡ y/f (x) ≤ 1 and 
yn = γf (xn). So yn ∈ Γ (xn). Then by continuity of f we have that limyn = 
γ lim f (xn) =  γf (x) =  y. Hence f is l.h.p.c. at x. 
Given x, Γ (x) is compact valued. Take arbitrary sequences xn → x and 

yn ∈ Γ (xn). Given that {xn} converges, this implies that {xn} is bounded. 
This implies that {yn} is bounded as well. Because any bounded sequence 
of real numbers has a convergent subsequence there exists a convergent sub-
sequence {ynk }. Let y = lim ynk . Now we need to show that lim ynk ≤ f (x). 
Suppose no, then for some N , we have that ynk − f (x) > ε  for all nk > N  . 
This implies then that ynk − f (xnk ) > 2ε for all nk > M > N  . But this is 
impossible, because ynk ∈ Γ (xnk ). 
c) Proceed coordinate by coordinate as in b) 

4.3) 
a) Let v (x0) be finite. Since v satisfies the FE, as shown in the proof of 

Theorem 4.3, for every x0 ∈ X and every ε >  0 there exists an x−→ ∈ Π (x0) 
such that 

v (x0) ≤ un 

¡ 
x 
¢ 
+ βn+1 v (xn+1) +

2 
ε 

−→ 

Taking the limit as n →∞  this gives 

v (x0) ≤ u 
¡ 
x 
¢ 
+ lim sup βn+1 v (xn+1) +  

2 
ε ≤ u 

¡ 
x 
¢ 
+
2 
ε 

→ −− → 
n→∞ 

Given that u 
¡ 
x 
¢ ≤ v ∗ (x0) this gives us that−→ 

∗ v (x0) ≤ v (x0) +  ε/2 

and hence v (x0) ≤ v ∗ (x0) for all x0. 
If v (x0) =  −∞, the result is immediate. If v (x0) =  ∞ the proof is along 

the lines of the last part of theorem 4.3 
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b) By the argument in theorem 4.3 we have that 

v (x0) ≥ un 

¡ 
x 
¢ 
+ β ¢ n+1 v (xn+1)−→ 

v (x0) ≥ lim un 

¡ 
x 0 + lim βn v 

¡
x n 
0 
+1 

¢ 
= un 

¡ 
x 0 
¢ 

→ → n→∞ − n→∞ −
For all → ∈ Π (x0). This implies thatx− 

∗ v (x0) ≥ v (x0) =  sup u 
¡ 
x 
¢ 

−→ 
x−→∈Π(x0) 

∗ 

≥ u 
¡ 
x 
¢ 

−→ 

and together with the result in part a), we have that v = v . 

4.4) 
a) Let K be a bound on F and M be a bound on f.Then 

(Tf  ) (x) ≤ K + βM , for all x ∈ X 

Hence T : B (X) → B(X). 
We show now that T is a contraction mapping. 
Monotonicity : 
Let f, g with f ≤ g. Then 

∗ ∗ (Tf  ) (x) =  max F (x, y) +  βf (y) =  F (x, y ) +  βf (y ) 
y∈Γ(x) 

∗ ∗≤ F (x, y ) +  βg(y ) ≤ (Tg) (x) 

∗where y ∈ argmax F (x, y) +  βf (y) 
Discounting: It is easy to show that T (f + a) (x) = (Tf  ) (x) +  βa. 
So, T is a contraction. There is a unique fixed point. Γ (x) is non-empty 

and finite-valued for all x implies that the optimal policy correspondence is 
non-empty; and the maximum is always attained. 
b) Similar to part (a) 
c) Note that 

wn (x) = (Thn wn) (x) 

≤ max [F (x, y) +  βwn (y)]¢ 
= (Twn) (x) =  

¡
Thn+1 wn (x) 

So we have that wn ≤ Twn. Monotonicity of Thn implies that Thn wn ≤ 
Thn (Twn) =  Th 

2 
n 
wn. Iterating in this operator we have that 

Twn ≤ T N 
hn+1 

wn 
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But wn+1 = limN →∞ Th
N 
n+1 

wn. Hence Twn ≤ wn+1. And 

w0 ≤ Tw0 ≤ w1 ≤ Tw1 ≤ ... ≤ Twn ≤ v 

By the contraction mapping, 

||wn − v||	 ≤ ||Twn−1 − v|| ≤ β ||wn−1 − v||
≤ β ||Twn−2 − v|| ≤ β2 ||wn−2 − v||
≤ βn ||w0 − v|| 

and hence wn → v as n →∞. 
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