

Introduction to Dynamic Optimization

Outline Today's Lecture

- finish off: theorem of the maximum
- $\bullet\,$ Bellman equation with bounded and continuous F
- differentiability of value function
- application: neoclassical growth model
- homogenous and unbounded returns, more applications

Our Favorite Metric Space

$$S = \left\{ f: X \to R, \ f \text{ is continuous, and } \|f\| \equiv \sup_{x \in X} |f(x)| < \infty \right\}$$

with

$$\rho(f,g) = \|f - g\| \equiv \sup_{x \in X} |f(x) - g(x)|$$
$$(Tv)(x) = \max_{y \in \Gamma(x)} \{F(x,y) + \beta v(y)\}$$

Assume that F is bounded and continuous and that Γ is continuous and has compact range.

Theorem 4.6. T maps the set of continuous and bounded functions S into itself. Moreover T is a contraction.

Proof. That T maps the set of continuous and bounded follow from the Theorem of Maximum (we do this next) That T is a contraction \rightarrow Blackwell sufficient conditions \rightarrow monotonicity, notice that for $f \geq v$

$$Tv(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta v(y)\}$$

= $F(x, g(x)) + \beta v(g(x))$
 $\leq \{F(x, g(y)) + \beta f(g(x))\}$
 $\leq \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\} = Tf(x)$

 \rightarrow discounting: for a > 0

$$T(v+a)(x) = \max_{y \in \Gamma(x)} \left\{ F(x,y) + \beta(v(y)+a) \right\}$$
$$= \max_{y \in \Gamma(x)} \left\{ F(x,y) + \beta v(y) \right\} + \beta a = T(v)(x) + \beta a.$$

Introduction to Dynamic Optimization

Theorem of the Maximum

 \bullet want T to map continuous function into continuous functions

$$(Tv)(x) = \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

• want to learn about optimal policy of RHS of Bellman

$$G(x) = \arg \max_{y \in \Gamma(x)} \left\{ F(x, y) + \beta v(y) \right\}$$

- First, continuity concepts for correspondences
- ... then, a few example maximizations
- ... finally, Theorem of the Maximum

Continuity Notions for Correspondences

assume Γ is non-empty and compact valued (the set $\Gamma(x)$ is non empty and compact for all $x \in X$) **Upper Hemi Continuity (u.h.c.) at** x: for any pair of sequences $\{x_n\}$ and $\{y_n\}$ with $x_n \to x$ and $x_n \in \Gamma(y_n)$ there exists a subsequence of $\{y_n\}$ that converges to a point $y \in \Gamma(x)$.

Lower Hemi Continuity (I.h.c.) at x: for any sequence $\{x_n\}$ with $x_n \to x$ and for every $y \in \Gamma(x)$ there exists a sequence $\{y_n\}$ with $x_n \in \Gamma(y_n)$ such that $y_n \to y$.

Continuous at x: if Γ is both upper and lower hemi continuous at x

Max Examples

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$
$$G(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

ex 1: $f(x, y) = xy; X = [-1, 1]; \Gamma(x) = X.$

$$G(x) = \begin{cases} \{-1\} & x < 0\\ [-1,1] & x = 0\\ \{1\} & x > 0 \end{cases}$$
$$h(x) = |x|$$

continued...

ex 2:
$$f(x,y) = xy^2$$
; $X = [-1, 1]$; $\Gamma(x) = X$

$$G(x) = \begin{cases} \{0\} & x < 0\\ [-1, 1] & x = 0\\ \{-1, 1\} & x > 0 \end{cases}$$

$$h(x) = \max\{0, x\}$$

Introduction to Dynamic Optimization

Theorem of the Maximum

Define:

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$

$$G(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

$$= \{y \in \Gamma(x) : h(x) = f(x, y)\}$$

Theorem 3.6. (Berge) Let $X \subset \mathbb{R}^l$ and $Y \subset \mathbb{R}^m$. Let $f : X \times Y \to \mathbb{R}$ be continuous and $\Gamma : X \to Y$ be compact-valued and continuous. Then $h: X \to \mathbb{R}$ is continuous and $G: X \to Y$ is non-empty, compact valued, and u.h.c.

$\lim \max \to \max \lim$

Theorem 3.8. Suppose $\{f_n(x, y)\}$ and f(x, y) are concave in y that and Γ is convex and compact valued.

Then if $f_n \rightarrow f$ in the sup-norm (uniformly). Define

$$g_n(x) = \arg \max_{y \in \Gamma(x)} f_n(x, y)$$
$$g(x) = \arg \max_{y \in \Gamma(x)} f(x, y)$$

then $g_n(x) \to g(x)$ for all x (pointwise convergence); if X is compact then the convergence is uniform.

Uses of Corollary of CMThm

Monotonicity of v^* **Theorem 4.7.** Assume that $F(\cdot, y)$ is increasing, that Γ is increasing, i.e.

 $\Gamma\left(x\right) \subset \Gamma\left(x'\right)$

for $x \leq x'$. Then, the unique fixed point v^* satisfying $v^* = Tv^*$ is increasing. If $F(\cdot, y)$ is strictly increasing, so is v^* .

Proof

By the corollary of the CMThm, it suffices to show Tf is increasing if f is increasing. Let $x \leq x'$:

$$Tf(x) = \max_{y \in \Gamma(x)} \{F(x, y) + \beta f(y)\}$$

= $F(x, y^*) + \beta f(y^*)$ for some $y^* \in \Gamma(x)$
 $\leq F(x', y^*) + \beta f(y^*)$

since $y^{*} \in \Gamma(x) \subset \Gamma(x')$

$$\leq \max_{y \in \Gamma(x')} \left\{ F(x, y) + \beta f(y) \right\} = Tf(x')$$

If $F\left(\cdot,y
ight)$ is strictly increasing

$$F(x, y^*) + \beta f(y^*) < F(x', y^*) + \beta f(y^*).$$

Concavity (or strict) concavity of v^*

Theorem 4.8. Assume that X is convex, Γ is concave, i.e. $y \in \Gamma(x)$, $y' \in \Gamma(x')$ implies that

$$y^{\theta} \equiv \theta y' + (1 - \theta) y \in \Gamma \left(\theta x' + (1 - \theta) x\right) \equiv \Gamma \left(x^{\theta}\right)$$

for any $x, x' \in X$ and $\theta \in (0, 1)$. Finally assume that F is concave in (x, y). Then, the fixed point v^* satisfying $v^* = Tv^*$ is concave in x. Moreover, if $F(\cdot, y)$ is strictly concave, so is v^* .

convergence of policy functions

- with concavity of F and convexity of $\Gamma \rightarrow$ optimal policy *correspondence* G(x) is actually a continuous *function* g(x)
- since $v_n \to v$ uniformly $\Rightarrow g_n \to g$ (Theorem 4.8)
- we can use this to derive comparative statics

Differentiability

- can't use same strategy as with monotonicty or concavity: space of differentiable functions is *not* closed
- $\bullet\,$ many envelope theorems, imply differentiability of h

$$h(x) = \max_{y \in \Gamma(x)} f(x, y)$$

- always if formula: if $h\left(x\right)$ is differentiable and there exists a $y^{*}\in int\left(\Gamma\left(x\right)\right)$ then

$$h'(x) = f_x(x,y)$$

...but is h differentiable?

continued...

- one approach (e.g. Demand Theory) relies on smoothness of Γ and f (twice differentiability) \rightarrow use f.o.c. and implicit function theorem
- won't work for us since $f(x, y) = F(x, y) + \beta V(y) \rightarrow \text{don't know if} f$ is once differentiable yet! \rightarrow going in circles...

Benveniste and Sheinkman

First a Lemma...

Lemma. Suppose v(x) is concave and that there exists w(x) such that $w(x) \le v(x)$ and $v(x_0) = w(x_0)$ in some neighborhood D of x_0 and w is differentiable at x_0 ($w'(x_0)$) exists) then v is differentiable at x_0 and $v'(x_0) = w'(x_0)$.

Proof. Since v is concave it has at least one subgradient p at x_0 :

$$w(x) - w(x_0) \le v(x) - v(x_0) \le p \cdot (x - x_0)$$

Thus a subgradient of v is also a subgradient of w. But w has a unique subgradient equal to $w'(x_0)$.

Benveniste and Sheinkman

Now a Theorem

Theorem. Suppose F is strictly concave and Γ is convex. If $x_0 \in int(X)$ and $g(x_0) \in int(\Gamma(x_0))$ then the fixed point of T, V, is differentiable at x and

$$V'(x) = F_x(x, g(x))$$

Proof. We know V is concave. Since $x_0 \in int(X)$ and $g(x_{\overline{0}}) \in int(\Gamma(x_{\overline{0}}))$ then $g(x_0) \in int(\Gamma(x_{\overline{0}}))$ for $x \in D$ a neighborhood of $x_{\overline{0}}$ then

$$W(x) = F(x, g(x_0)) + \beta V(g(x_0))$$

and then $W(x) \leq V(x)$ and $W(x_0) = V(x_0)$ and $W'(x_0) = F_x(x_0, g(x_0))$ so the result follows from the lemma.