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Outline Today’s Lecture 

• finish off: theorem of the maximum 

• Bellman equation with bounded and continuous F 

• differentiability of value function 

• application: neoclassical growth model 

• homogenous and unbounded returns, more applications 
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Our Favorite Metric Space 

S = 

½ 

f : X → R, f is continuous, and kf k ≡ sup 
x∈X 

|f (x)| < ∞ 

¾ 

with 
ρ (f, g) =  kf − gk ≡ sup 

x∈X 
|f (x) − g (x)| 

(Tv) (x) =  max 
y∈Γ(x) 

{F (x, y) +  βv (y)} 

Assume that F is bounded and continuous and that Γ is continuous and has 
compact range. 
Theorem 4.6. T maps the set of continuous and bounded functions S into 
itself. Moreover T is a contraction. 
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Proo f. That T maps the s et of continuous a nd bo unded f ollo w f rom the 
Theorem of Maximum (we do this next) 
That T is a contraction → Blackwell sufficient conditions 
→monotonicity, notice that for f ≥ v 

Tv  (x) =  max 
y∈Γ(x) 

{F (x, y) +  βv (y)} 

= F (x, g (x)) + βv (g (x)) 

≤ {F (x, g (y)) + βf (g (x))}
≤ max 

y∈Γ(x) 
{F (x, y) +  βf (y)} = Tf  (x) 

→discounting: for a >  0 

T (v + a) (x) =  max 
y∈Γ(x) 

{F (x, y) +  β (v (y) +  a)} 

= ax 
y∈Γ(x) 

{F (x, y) +  βv (y)} + βa = T (v) (x) +  βa. 

 

m
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Theorem of the Maximum 

• wan t T to map c ontinuous f unction into continuous f unctions 

(Tv) (x) =  max 
y∈Γ(x) 

{F (x, y) +  βv (y)} 

• want to learn about optimal policy of RHS of Bellman 

G (x) =  arg max 
y∈Γ(x) 

{F (x, y) +  βv (y)} 

• First, continuity concepts for correspondences 
• ... then, a few example maximizations 

• ... finally, Theorem of the Maximum 
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Continuity Notions for Correspondences 

assume Γ is non-empty and compact valued (the set Γ (x) is non empty and 
compact for all x ∈ X) 
Upper Hemi Continuity (u.h.c.) at x: for any pair of sequences {xn} and 
{yn} with xn → x and xn ∈ Γ (yn) there exists a subsequence of {yn} that 
converges to a point y ∈ Γ (x) . 

Lower Hemi Continuity (l.h.c.) at x: for any sequence {xn} with xn → x 
and for every y ∈ Γ (x) there exists a sequence {yn} with xn ∈ Γ (yn) such 
that yn → y. 

Continuous at x: if Γ is both upper and lower hemi continuous at x 
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Max Examples 

h (x) =  max 
y∈Γ(x) 

f (x, y) 

G (x) = arg max 
y∈Γ(x) 

f (x, y) 

ex 1: f (x, y) =  xy; X = [−1, 1] ; Γ (x) =  X. 

G (x) =  

   

{−1} x <  0 
[−1, 1] x = 0  
{1} x >  0 

h (x) =  |x| 
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ex 2: f (x, y) =  xy2; X = [− 1, 1] ; Γ (x ) =  X 

G (x) =  

  {0} x <  0 
[−1, 1] x = 0   {−1, 1}

Introd uction to Dynamic O ptimization                               Nr. 7A

x >  0  

h (x) =  max {0, x} 

jdas



Theorem of the Maximum 

Define: 

h (x) =  max 
y∈Γ(x) 

f (x, y) 

G (x) = arg max 
y∈Γ(x) 

f (x, y) 

= {y ∈ Γ (x) :  h (x) =  f (x, y)} 

Theorem 3.6. (Berge) Let X ⊂ Rl and Y ⊂ Rm . Let f : X × Y → R 
be continuous and Γ : X → Y be compact-valued and continuous. Then 
h : X → R is continuous and G : X → Y is non-empty, compact valued, and 
u.h.c. 
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lim max → max lim 

Theorem 3.8. Suppose {fn (x, y)} and f (x, y) are concave in y that and Γ 
is convex and compact valued. 
Then if fn → f in the sup-norm (uniformly). Define 

gn (x) = arg max 
y∈Γ(x) 

fn (x, y) 

g (x) = arg max 
y∈Γ(x) 

f (x, y) 

then gn (x) → g (x) for all x (pointwise convergence); if X is compact then 
the convergence is uniform. 
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Uses of Corollary of CMThm 

Monotonicity of v ∗ 

Theorem 4.7. Assume that F (·, y) is increasing, that Γ is increasing, i.e. 

Γ (x) ⊂ Γ (x 0) 

for x ≤ x0 . Then, the unique fixed point v ∗ satisfying v ∗ = Tv∗ is increasing. 
If F (·, y) is strictly increasing, so is v ∗ . 
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Proof 
By the corollary of the CMThm, it suffices to show Tf  is increasing if f is 
increasing. Let x ≤ x0 : 

Tf  (x) =  max 
y∈Γ(x) 

{F (x, y) +  βf (y)} 
= F (x, y ∗ ) +  βf (y ∗ ) for some y ∗ ∈ Γ (x) 

≤ F (x 0 , y  ∗ ) +  βf (y ∗ ) 

since y ∗ ∈ Γ (x) ⊂ Γ (x0) 

≤ max 
y∈Γ(x0 ) 

{F (x, y) +  βf (y)} = Tf  (x 0) 

If F (·, y) is strictly increasing 

F (x, y ∗ ) +  βf (y ∗ ) < F  (x 0 , y  ∗ ) +  βf (y ∗ ) . 
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Concavity (or strict) concavity of v ∗ 

Theorem 4.8. Assume that X is convex, Γ is concave, i.e. y ∈ Γ (x) , y0 ∈ 
Γ (x0) implies that 

y θ ≡ θy0 + (1 − θ) y ∈ Γ (θx0 + (1 − θ) x) ≡ Γ 
¡
x θ 
¢ 

for any x, x0 ∈ X and θ ∈ (0, 1) . Finally assume that F is concave in (x, y). 
Then, the fixed point v ∗ satisfying v ∗ = Tv∗ is concave in x. Moreover, if 
F (·, y) is strictly concave, so is v ∗ . 
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convergence of policy functions 

• with concavity of F and convexity of Γ → optimal policy correspondence 
G (x) is actually a continuous function g (x) 

• since vn → v uniformly ⇒ gn → g 
(Theorem 4.8) 

• we can use this to derive comparative statics 
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Differentiability 

• can’t use same strategy as with monotonicty or concavity: 
space of differentiable functions is not closed 

• many envelope theorems, imply differentiability of h 

h (x) =  max 
y∈Γ(x) 

f (x, y) 

• always if formula: if h (x) is differentiable and there exists a y ∗ ∈ 
int (Γ (x)) then 

h0 (x) =  fx (x, y) 

...but is h differentiable? 
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• one a pp roach ( e.g. Demand Theo ry) r elies o n s moothness of Γ and f 
(twice differentiability) → use f.o.c. and implicit function theorem 

• won ’ t w ork f or u s s in ce f (x, y) =  F (x, y) +  βV (y) → don’t k no w i f f 

is once differentiable yet! → going in circles...

jdas
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Benveniste and Sheinkman 

First a Lemma... 
Lemma. Suppose v (x) is concave and that there exists w (x) such that 
w (x) ≤ v (x) and v (x0) =  w (x0) in some neighborhood D of x0 and w is 
differentiable at x0 (w

0 (x0) exists) then v is differentiable at x0 and v0 (x0) =  
w0 (x0). 
Proo f. Since v is concave i t h as at least o ne subgradient p at x0: 

w (x) − w (x0) ≤ v (x) − v (x0) ≤ p · (x − x0) 

Thus a subgradient of v is also a subgradient of w. But w has a unique 
subgradient equal to w0 (x0) .  
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Benveniste and Sheinkman 

Now a Theorem 
Theorem. Suppose F is strictly concave and Γ is convex. If x0 ∈ int (X) 
and g (x0) ∈ int (Γ (x0)) then the fixed point of T,  V, is differentiable at x 
and 

V 0 (x) =  Fx (x, g (x)) 

Proof. We know V is concave. Since x0 ∈ int (X) and g (x  0) ∈ int (Γ (x 0)) 
then g (x0) ∈ int (Γ (x )) fo r x ∈ D a n e i g h bo rh ood o f x 0 then 

W (x) =  F (x, g (x0)) + βV (g (x0)) 

and then W (x ) ≤ V (x ) and W (x0) =  V (x0) and W 0 (x0) =  Fx (x0, g  (x0)) 
so the r esult follo ws from the l emma.  
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