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Exponential Discounting Model 

∞X 
δτ −t Ut ≡ uτ = ut + δut+1 + δ2 ut+2 + δ3 ut+3 + . . . 

τ=t 

What is the key assumption of this model? 
Amount of patience between any two periods the same 

What does this assumption imply? 
Same degree of patience in the short- and long-run 
Time consistency 
No demand for commitment 

Does this seem realistic? 
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Exponential discounting: calibration 

Assume exponential discounting and linear utility of consumption. 

A student is indifferent between $100 today and $120 in two weeks. 
What is δ? 5/6 for two weeks. 

5 
100 = · 120 

6 

So the student discounts one month by (5/6)2 . 
Discounts one year by (5/6)24 . 

Implies indifference between $100 today and $7949.68 in one year! � �24 
5 

100 = · 7949.68 
6 
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Exponential discounting: calibration 

Assume exponential discounting and linear utility of consumption. 

Suppose δ = 0.9 (over one month). 

Pick between $50 today and $100 in two months. 
Will pick $100 in two months. 100 · 0.92 = 81 > 50. 

Suppose δ = 0.7. 

Pick between $50 today and $100 in two months. 
Will pick $50 today. 100 · 0.72 = 49 < 50. 

4



Evidence against the Exponential Discounting Model 

Short-run impatience and long-run patience 

Time inconsistency 

Demand for commitment 
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What Does Patience being Constant over Time Mean? 

Question 1: would you like to 
(a) eat one piece of candy now, or 
(b) eat two pieces of candy in an hour? 

Question 2: would you like to 
(a) eat one piece of candy in a week, or 
(b) eat two pieces of candy in a week and an hour? 

Patience being constant over time means you’d either choose (a) for both or (b) for both 

Bonus question: why do the (a) options have one piece and the (b) options have two pieces? 
The exponential discounting world does allow for impatience (i.e. δ < 1) 

Lots of evidence of short-run impatience and long-run patience 
which implies many individuals would choose (a) for question 1 and (b) for question 2 7



Frederick et al. (2002): Estimated δ increases by time horizon 362 Journal of Economic Li terature,  Vo l .  X L  (June  2002) 
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Figure l a .  Discount Factor as a Function of Time 
Horizon (all studies) 

although they did not interpret their 
results the same way. 

If Read is correct about subadditive 
discounting, its main implication for 
economic applications may be to provide 
an alternative psychological underpin-
ning for using a hyperbolic discount 
function, because most intertemporal 
decisions are based primarily on dis-
counting from the present.17 

17.4 few studies have actually found increasing 
discount rates. Frederick (1999) asked 228 respon- 
dents to imagine that they worked at a job that 
consisted of both leasant work (" ood days") and 
unpleasant work Fbad days") an$ to equate the 
attractiveness of having additional good days this 
year or in a future year. On average, respondents 
were indifferent between 20 extra good days this 
year, 21 the following year, or 40 in five years, 
im lying a one-year discount rate of 5 percent and 
a {ve-year discount rate of 15 percent A possible 
explanation is that a desire for improvement is 
evoked more strong1 for two successive years 
(this year and next) t xan for two separated years 
(this ear and five years hence). Rubinstein (2000) 
askedstudents in a political science class to choose 
between the following two payment sequences: 

March 1 June 1 Sept 1 Nov 1 
A: $997 $997 $997 $997 

April 1 July1 Oct 1 Dec 1 
B: $1000 $1000 $1000 $1000 

Then, two weeks later, he asked them to choose 
between $997 on November 1 and $1000 on 
December 1. Fifty-four ercent of respondents 

referred $997 in Novernier to $1000 in Decem- 
%er, but only 34 percent preferred sequence A to 
sequence B. These two results suggest increasing 
discount rates. To explain them Rubinstein specu- 
lated that the three more proximate additional ele- 

time horizon (years) 

Figu,re l b .  Discount Factor as a Function of Time 
Horizon (studies with avg. horizons > 1year) 

4.2 Other DU Anomalies 

The DU model not only dictates that 
the discount rate should be constant for 
all time periods; it also assumes that the 
discount rate should be the same for all 
types of goods and all categories of 
intertemporal decisions. There are sev- 
eral empirical regularities that appear to 
contradict this assumption, namely: 
(1) gains are discounted more than. , V 

losses; (2)  small amounts are discounted 
more than large amounts; (3)  greater 
discounting is shown to avoid delay 
of a good than to expedite its receipt; 
(4)  in choices over sequences of 
outcomes, improving sequences are 
often preferred to declining sequences 
though positive time preference dic-
tates the opposite; and (5) in choices 
over sequences, violations of indepen- 
dence are pervasive, and people seem 
to prefer spreading consumption over 
time in a way that diminishing marginal 
utility alone cannot explain. 

4.2.1 	The "Sign Effect" (gains are 
discounted more than losses) 

Many studies have concluded that 
gains are discounted at a higher rate 
than losses. For  instance, Thaler (1981) 

ments may have masked the differences in the 
timing of the sequence of dated amounts, while 
making the differences in amounts more salient. 

Figure: Frederick et al. (2002), Figure 1a
© American Economic Association. All rights reserved. This content is excluded from our Creative 
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Evidence against the Exponential Discounting Model 

Short-run impatience and long-run patience 

Time inconsistency 

Demand for commitment 
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Time Consistency 
Time consistency (or dynamic consistency) = the action a person thinks she should take in the future 
always coincides with the action that she actually prefers to take once the time comes 

Time consistency an implication of the exponential discounting model 
Consider the choice between two actions in period 1, A and B 
At time t = 0, the individual prefers action A over B if and only if 

u0 + δu1(A) + δ2 u2(A) + . . . ≥ u0 + δu1(B) + δ2 u2(B) + . . . 

Subtracting u0 and dividing by δ gives 

u1(A) + δu2(A) + . . . ≥ u1(B) + δu2(B) + . . . 

which means the individual prefers A over B at time t = 1 
That is, in the exponential discounting model, preferring A over B at t = 0 implies the individual will 
choose A over B at t = 1 

i.e. the individual is time consistent 

Is time consistency realistic? Can you think of examples of time inconsistency? 
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Demand for Commitment 

Commitment device = a choice an individual makes in the present which restricts his set of choices in 
the future 

In the exponential discounting model, would the individual want a commitment device? 
No. In this model, choices are time consistent so the future self will make whatever decision the present 
self prefers, whether or not choices are restricted. 

Can you think of examples of people demanding commitment devices? 
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Evidence against the Exponential Discounting Model 

Short-run impatience and long-run patience 

Time inconsistency 

Demand for commitment 
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Quasi-Hyperbolic Discounting Model 

At time t, the person aims to maximize 

ut + βδut+1 + βδ2 ut+2 + βδ3 ut+3 + . . . , 

What’s the key difference between this model and the exponential discounting model? 
β, the short-term discount factor 
β relaxes the assumption that the amount of patience between any two periods is the same; it allows for 
more impatience between today and tomorrow than between 7 and 8 days from now 

Why is the quasi-hyperbolic discounting model a better fit, at least in some situations? 
Its two parameters allow for short-run impatience and long-run patience 
It predicts time-inconsistent behavior and demand for commitment 
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Quasi-hyperbolic discounting 
Algorithm 

Utility is given for each t by 
TX 

= δt−1 δs−1 Ut ut (xt ) + β us (xs ). (1) 
s≥t 

∗ )T The algorithm to solve the optimal plan (x t=1 is by backwards induction. t 

∗ 1. Determine x (·), a function of (xs )s<T . T 

first, calculate payoffs for each possible choice of xT , given (xs )s<T 

second, choose the best choice; this is the function x T 
∗ 

∗ 2. Then use this information to determine x (·), as function of (xs T −1 )s<T −1. 

3. Continue until you reach t = 1. 
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Example 

⎧ ⎪⎨ ⎪⎩ 

Actions xt ∈ {0, 1}. Payoffs 

0 if xt = 0 and t < T 

ut (x) = −θt if xt = 1 (2) 

−∞ if t = T and xs = 0 for all s ≤ T . 

I.e., at T , if you have not done xt , you must do it! 

∗ At T , optimal policy is x (x) = 0 if xt > 0 for any t < T , and 1 otherwise. T 

∗ At T − 1, it is more interesting. If xt = 0 for all t < T − 1, then the optimal x is to delay to T if and T −1 
only if 

θT −1 > βδθT . 

∴ incentives to delay increase as β → 0. X 16



Three-period example (T = 3) 
Backwards induction: 

∗ If x1 = x2 = 0, then x 3 = 1. 
∗ If x1 = 0, then x 2 = 1 ⇐⇒ −θ2 > −βδθ3. 

Then payoffs from x1 are (
−θ1 

∗ ∗ −β δθ2x 2 + δ2θ3x 3 if x1 = 0 
� � if x1 = 1 

(3) 

� � ∗ ∗ ∗ so that x = 1 ⇐⇒ −θ1 > β δθ2x + δ2θ3x . 1 2 3 

So we deduce that 

∗ x = 

⎧ ⎪⎨ ⎪⎩ 

(0, 0, 1) if βδθ3 < θ2 and βδ2θ3 < θ1 

(0, 1, 0) if θ2 < βδθ3 and βδθ2 < θ1 (4) 

(1, 0, 0) otherwise. 

∗ E.g., as β → 0, x = (0, 0, 1). 
∗ As β, δ → 1, then x = (1, 0, 0) (when θt increases in t). 
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Three-period example, continued 
∗ The x is the optimal policy or the agent’s behavior. X 

Welfare (utility) at t = 1 is given by 

u(θ, δ, β) = 

⎧ ⎪⎨ ⎪⎩ 

−βδ2θ3 if βδθ3 < θ2 and βδ2θ3 < θ1 

−βδθ2 if θ2 < βδθ3 and βδθ2 < θ1 (5) 

−θ1 otherwise. 

∗ Now suppose the parameters are such that x = 0. 1 

Demand for commitment. At t = 1, would prefer to commit to x2 = 1 if 

θ2 < δθ3 

but in reality, will not do x2 = 1 at t = 2 unless 

θ2 < βδθ3. 

Hence commitment has value when θ2 ∈ [βδθ3, δθ3]. In this region, the willingness to pay for a 
commitment device at t = 1 is −βδ(θ2 − δθ3). 
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Numerical example 
Let (θ1, θ2, θ3) = ( 8 , 1, 2). 9 

1 Let δ = 0.9 and β = . Recall the optimal policy is 2 

∗ x = 

⎧ ⎪⎨ ⎪⎩ 

(0, 0, 1) if βδθ3 < θ2 and βδ2θ3 < θ1 

(0, 1, 0) if θ2 < βδθ3 and βδθ2 < θ1 (4) 

(1, 0, 0) otherwise. 

Check: 
1 9 βδθ3 = · · 2 < 1 = θ2 X 2 10 
1 81 8 βδ2θ3 = · · 2 < = θ X 2 100 9 

∴ Agent does the action at t = 3 by equation (4). 
Would the agent prefer to do it at t = 2, from the viewpoint of t = 1? I.e., check if θ2 < δθ3: 

9 
θ2 = 1 < δθ3 = · 2 

10 
Indeed! The agent would. And the value of the commitment device is 

9 9 4 9 −βδ(θ2 − δθ3) = − 1 · · (1 − 18 ) = 1 · · = . 2 10 10 2 10 5 25 
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Beliefs 
Studying the model further. 

Now, although the agent’s true preferences are still given by (1) in each t, the agent thinks that it will 
ˆbehave in the future as if its β were some β. Say 

“näıve” if β ̂= 1 
“sophisticated” if β ̂= β 

This affects the calculation of the x ∗’s, which depend on β̂! In the example, use β ̂ in (4) rather than the 
true β. 

Remark. Frank’s shortcut. If β ̂= 1, then you can calculate all of the x ∗ ’s as in a “standard” 
(exponential-discounting) dynamic optimization problem starting at each t. 

But to evaluate payoffs, still use the true β. E.g., 

−βδ2θ3 if ˆ βδ2θ3 < θ1 βδθ3 < θ2 and ˆ

ũ(θ, δ, β, β̂) = −βδθ2 if θ2 < βδθˆ
3 and ˆ (6) 

−θ1 otherwise. 

βδθ2 < θ1 

⎧ ⎪⎨ ⎪⎩ 
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