Recitation 2: Exponential vs. Quasi-Hyperbolic Discounting

Maddie McKelway \& Will Rafey

Exponential Discounting Model

$$
U_{t} \equiv \sum_{\tau=t}^{\infty} \delta^{\tau-t} u_{\tau}=u_{t}+\delta u_{t+1}+\delta^{2} u_{t+2}+\delta^{3} u_{t+3}+\ldots
$$

- What is the key assumption of this model?
- Amount of patience between any two periods the same
- What does this assumption imply?
- Same degree of patience in the short- and long-run
- Time consistency
- No demand for commitment
- Does this seem realistic?

Exponential discounting: calibration

- Assume exponential discounting and linear utility of consumption.
- A student is indifferent between $\$ 100$ today and $\$ 120$ in two weeks.
- What is δ ? $5 / 6$ for two weeks.

$$
100=\frac{5}{6} \cdot 120
$$

- So the student discounts one month by $(5 / 6)^{2}$.
- Discounts one year by $(5 / 6)^{24}$.
- Implies indifference between $\$ 100$ today and $\$ 7949.68$ in one year!

$$
100=\left(\frac{5}{6}\right)^{24} \cdot 7949.68
$$

Exponential discounting: calibration

- Assume exponential discounting and linear utility of consumption.
- Suppose $\delta=0.9$ (over one month).
- Pick between $\$ 50$ today and $\$ 100$ in two months.
- Will pick $\$ 100$ in two months. $100 \cdot 0.9^{2}=81>50$.
- Suppose $\delta=0.7$.
- Pick between $\$ 50$ today and $\$ 100$ in two months.
- Will pick $\$ 50$ today. $100 \cdot 0.7^{2}=49<50$.

Evidence against the Exponential Discounting Model

- Short-run impatience and long-run patience
- Time inconsistency
- Demand for commitment

Evidence against the Exponential Discounting Model

- Short-run impatience and long-run patience
- Time inconsistency
- Demand for commitment

What Does Patience being Constant over Time Mean?

- Question 1: would you like to
(a) eat one piece of candy now, or
(b) eat two pieces of candy in an hour?
- Question 2: would you like to
(a) eat one piece of candy in a week, or
(b) eat two pieces of candy in a week and an hour?
- Patience being constant over time means you'd either choose (a) for both or (b) for both
- Bonus question: why do the (a) options have one piece and the (b) options have two pieces?
- The exponential discounting world does allow for impatience (i.e. $\delta<1$)
- Lots of evidence of short-run impatience and long-run patience
- which implies many individuals would choose (a) for question 1 and (b) for question 2_{7}

Frederick et al. (2002): Estimated δ increases by time horizon

Figure: Frederick et al. (2002), Figure 1a
© American Economic Association. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/fag-fair-use/

Evidence against the Exponential Discounting Model

- Short-run impatience and long-run patience
- Time inconsistency
- Demand for commitment

Time Consistency

- Time consistency (or dynamic consistency) = the action a person thinks she should take in the future always coincides with the action that she actually prefers to take once the time comes
- Time consistency an implication of the exponential discounting model
- Consider the choice between two actions in period $1, A$ and B
- At time $t=0$, the individual prefers action A over B if and only if

$$
u_{0}+\delta u_{1}(A)+\delta^{2} u_{2}(A)+\ldots \geq u_{0}+\delta u_{1}(B)+\delta^{2} u_{2}(B)+\ldots
$$

- Subtracting u_{0} and dividing by δ gives

$$
u_{1}(A)+\delta u_{2}(A)+\ldots \geq u_{1}(B)+\delta u_{2}(B)+\ldots
$$

which means the individual prefers A over B at time $t=1$

- That is, in the exponential discounting model, preferring A over B at $t=0$ implies the individual will choose A over B at $t=1$
- i.e. the individual is time consistent
- Is time consistency realistic? Can you think of examples of time inconsistency?

Evidence against the Exponential Discounting Model

- Short-run impatience and long-run patience
- Time inconsistency
- Demand for commitment

Demand for Commitment

- Commitment device $=$ a choice an individual makes in the present which restricts his set of choices in the future
- In the exponential discounting model, would the individual want a commitment device?
- No. In this model, choices are time consistent so the future self will make whatever decision the present self prefers, whether or not choices are restricted.
- Can you think of examples of people demanding commitment devices?

Evidence against the Exponential Discounting Model

- Short-run impatience and long-run patience
- Time inconsistency
- Demand for commitment

Quasi-Hyperbolic Discounting Model

At time t, the person aims to maximize

$$
u_{t}+\beta \delta u_{t+1}+\beta \delta^{2} u_{t+2}+\beta \delta^{3} u_{t+3}+\ldots,
$$

- What's the key difference between this model and the exponential discounting model?
- β, the short-term discount factor
- β relaxes the assumption that the amount of patience between any two periods is the same; it allows for more impatience between today and tomorrow than between 7 and 8 days from now
- Why is the quasi-hyperbolic discounting model a better fit, at least in some situations?
- Its two parameters allow for short-run impatience and long-run patience
- It predicts time-inconsistent behavior and demand for commitment

Quasi-hyperbolic discounting

Algorithm

Utility is given for each t by

$$
\begin{equation*}
U_{t}=\delta^{t-1} u_{t}\left(x_{t}\right)+\beta \sum_{s \geq t}^{T} \delta^{s-1} u_{s}\left(x_{s}\right) \tag{1}
\end{equation*}
$$

The algorithm to solve the optimal plan $\left(x_{t}^{*}\right)_{t=1}^{T}$ is by backwards induction.

1. Determine $x_{T}^{*}(\cdot)$, a function of $\left(x_{s}\right)_{s<T}$.

- first, calculate payoffs for each possible choice of x_{T}, given $\left(x_{s}\right)_{s<T}$
- second, choose the best choice; this is the function x_{T}^{*}

2. Then use this information to determine $x_{T-1}^{*}(\cdot)$, as function of $\left(x_{s}\right)_{s<T-1}$.
3. Continue until you reach $t=1$.

Example

Actions $x_{t} \in\{0,1\}$. Payoffs

$$
u_{t}(x)= \begin{cases}0 & \text { if } x_{t}=0 \text { and } t<T \tag{2}\\ -\theta_{t} & \text { if } x_{t}=1 \\ -\infty & \text { if } t=T \text { and } x_{s}=0 \text { for all } s \leq T\end{cases}
$$

l.e., at T, if you have not done x_{t}, you must do it!

At T, optimal policy is $x_{T}^{*}(x)=0$ if $x_{t}>0$ for any $t<T$, and 1 otherwise.
At $T-1$, it is more interesting. If $x_{t}=0$ for all $t<T-1$, then the optimal x_{T-1}^{*} is to delay to T if and only if

$$
\theta_{T-1}>\beta \delta \theta_{T}
$$

\therefore incentives to delay increase as $\beta \rightarrow 0$.

Three-period example ($T=3$)

Backwards induction:

- If $x_{1}=x_{2}=0$, then $x_{3}^{*}=1$.
- If $x_{1}=0$, then $x_{2}^{*}=1 \Longleftrightarrow-\theta_{2}>-\beta \delta \theta_{3}$.
- Then payoffs from x_{1} are

$$
\begin{cases}-\theta_{1} & \text { if } x_{1}=1 \tag{3}\\ -\beta\left[\delta \theta_{2} x_{2}^{*}+\delta^{2} \theta_{3} x_{3}^{*}\right] & \text { if } x_{1}=0\end{cases}
$$

so that $x_{1}^{*}=1 \Longleftrightarrow-\theta_{1}>\beta\left[\delta \theta_{2} x_{2}^{*}+\delta^{2} \theta_{3} x_{3}^{*}\right]$.

- So we deduce that

$$
x^{*}= \begin{cases}(0,0,1) & \text { if } \beta \delta \theta_{3}<\theta_{2} \text { and } \beta \delta^{2} \theta_{3}<\theta_{1} \tag{4}\\ (0,1,0) & \text { if } \theta_{2}<\beta \delta \theta_{3} \text { and } \beta \delta \theta_{2}<\theta_{1} \\ (1,0,0) & \text { otherwise. }\end{cases}
$$

E.g., as $\beta \rightarrow 0, x^{*}=(0,0,1)$.

As $\beta, \delta \rightarrow 1$, then $x^{*}=(1,0,0)$ (when θ_{t} increases in t).

Three-period example, continued

The x^{*} is the optimal policy or the agent's behavior.
Welfare (utility) at $t=1$ is given by

$$
u(\theta, \delta, \beta)= \begin{cases}-\beta \delta^{2} \theta_{3} & \text { if } \beta \delta \theta_{3}<\theta_{2} \text { and } \beta \delta^{2} \theta_{3}<\theta_{1} \tag{5}\\ -\beta \delta \theta_{2} & \text { if } \theta_{2}<\beta \delta \theta_{3} \text { and } \beta \delta \theta_{2}<\theta_{1} \\ -\theta_{1} & \text { otherwise }\end{cases}
$$

Now suppose the parameters are such that $x_{1}^{*}=0$.
Demand for commitment. At $t=1$, would prefer to commit to $x_{2}=1$ if

$$
\theta_{2}<\delta \theta_{3}
$$

but in reality, will not do $x_{2}=1$ at $t=2$ unless

$$
\theta_{2}<\beta \delta \theta_{3}
$$

Hence commitment has value when $\theta_{2} \in\left[\beta \delta \theta_{3}, \delta \theta_{3}\right]$. In this region, the willingness to pay ${ }^{18}$ for a commitment device at $t=1$ is $-\beta \delta\left(\theta_{2}-\delta \theta_{3}\right)$.

Numerical example

Let $\left(\theta_{1}, \theta_{2}, \theta_{3}\right)=\left(\frac{8}{9}, 1,2\right)$.
Let $\delta=0.9$ and $\beta=\frac{1}{2}$. Recall the optimal policy is

$$
x^{*}= \begin{cases}(0,0,1) & \text { if } \beta \delta \theta_{3}<\theta_{2} \text { and } \beta \delta^{2} \theta_{3}<\theta_{1} \tag{4}\\ (0,1,0) & \text { if } \theta_{2}<\beta \delta \theta_{3} \text { and } \beta \delta \theta_{2}<\theta_{1} \\ (1,0,0) & \text { otherwise } .\end{cases}
$$

Check:

- $\beta \delta \theta_{3}=\frac{1}{2} \cdot \frac{9}{10} \cdot 2<1=\theta_{2} \checkmark$
- $\beta \delta^{2} \theta_{3}=\frac{1}{2} \cdot \frac{81}{100} \cdot 2<\frac{8}{9}=\theta \checkmark$
\therefore Agent does the action at $t=3$ by equation (4).
Would the agent prefer to do it at $t=2$, from the viewpoint of $t=1$? I.e., check if $\theta_{2}<\delta \theta_{3}$:

$$
\theta_{2}=1<\delta \theta_{3}=\frac{9}{10} \cdot 2
$$

Indeed! The agent would. And the value of the commitment device is

Beliefs

Studying the model further.
Now, although the agent's true preferences are still given by (1) in each t, the agent thinks that it will behave in the future as if its β were some $\hat{\beta}$. Say

- "naïve" if $\hat{\beta}=1$
- "sophisticated" if $\hat{\beta}=\beta$

This affects the calculation of the x^{*} 's, which depend on $\hat{\beta}!$ In the example, use $\hat{\beta}$ in (4) rather than the true β.
Remark. Frank's shortcut. If $\hat{\beta}=1$, then you can calculate all of the x^{*} 's as in a "standard" (exponential-discounting) dynamic optimization problem starting at each t.

But to evaluate payoffs, still use the true β. E.g.,

$$
\tilde{u}(\theta, \delta, \beta, \hat{\beta})= \begin{cases}-\beta \delta^{2} \theta_{3} & \text { if } \hat{\beta} \delta \theta_{3}<\theta_{2} \text { and } \hat{\beta} \delta^{2} \theta_{3}<\theta_{1} \tag{6}\\ -\beta \delta \theta_{2} & \text { if } \theta_{2}<\hat{\beta} \delta \theta_{3} \text { and } \hat{\beta} \delta \theta_{2}<\theta_{1} \\ -\theta_{1} & \text { otherwise. }\end{cases}
$$

MIT OpenCourseWare
https://ocw.mit.edu/
14.13: Psychology and Economics

Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

