# Recitation 6: Midterm Review 

Will Rafey

## Outline

Midterm consists of three parts:

- True/false
- State true, false, or uncertain
- Always explain answer carefully
- Need to provide intuition
(1) Multiple choice
(1) Short answer (similar to problem set)

Most important resources:

- lecture + recitation slides
- problem sets and solutions.


## True-False: Example 1

T/F. Consider individuals with " $\beta, \delta$ " preferences, who only differ by their present bias, $\beta \in[0,1]$. Suppose there is a commitment savings device available. Willingness to pay for this commitment device strictly decreases in $\beta$.

False. Why?

- Individuals may be naïve
- Commitment device may not be effective
- Even if individuals are fully sophisticated and the device is effective, willingness to pay may not be strictly decreasing.
- Individuals would be willing to pay 0 for $\beta=0$ and for $\beta=1$, but willing to pay a positive amount for $\beta \in(0,1)$.


## True-False: Example 2

T/F. Fully sophisticated individuals can experience large welfare losses from their present bias.

True. Why?

- Awareness of present bias (i.e. sophistication) does not remove present bias
- Sophisticates that lack commitment devices may still make suboptimal decisions


## True-False: Example 3

T/F. Present-biased individuals will always have positive demand for commitment devices.

False. Why?

- Three conditions must be met for positive demand for commitment:
(1) Individuals must be present-biased.
(1) Individuals must be aware of their present-bias (i.e. they can't be fully naive).
(T) Individuals must perceive the commitment device as effective in helping overcome the self-control problem.
- When only the first is met, we cannot be sure there will be positive demand for commitment.


## Multiple Choice: Example 1

Pierre-Luc is writing a problem set for 14.13 . He gets utility $u(q)$ from the number of questions he writes. He has reference dependent preferences around his goal of writing 10 questions. Normalize $u(10)=0$. Which of the following would be consistent with loss aversion?
(a) $u(8)=-2, u(12)=2$
(b) $u(8)=-2, u(12)=1$
(c) $u(8)=-1, u(12)=2$
(b). Why?

- Loss aversion means losses hurt more than gains help
- With preferences in (b), Pierre-Luc would have a utility cost of 2 from falling short of his goal by 2 questions, but only gain 1 util from exceeding his goal by 2 questions.


## Multiple Choice: Example 2

Q: Maddie is walking home and passes a bakery. She suddenly decides to buy a pastry. Prior to purchasing the pastry, her maximum willingness to pay for the pastry was $p_{0}$. She then runs into Pierre-Luc who asks to buy the pastry from her. She offers him the lowest price she is willing to accept, $p_{1}$. Which of the following comparisons between $p_{0}$ and $p_{1}$ is consistent with an endowment effect?
(a) $p_{0}>p_{1}$
(b) $p_{0}=p_{1}$
(c) $p_{0}<p_{1}$
(c). Why?

- Consistent with an endowment effect, $p_{0}<p_{1}$ implies Maddie values the pastry more after she has bought it than prior to buying it.

Q: Now suppose that Maddie first notices the pastry has gone stale, before she offers Pierre-Luc a price. Maddie always prefers fresher pastries. Which of (a)-(c) is consistent with the endowment effect?

## Long Question: Example 1

Present Bias

Setup. Assume 14.13 students are present biased with $\beta<1$ and $\delta=1$. All students have the same $\beta<1$ and $\delta=1$ but differ in the value they derive from using laptops in class, $L_{i}$.
$L_{i}$ is uniformly distributed across students $i$ on the interval $[0,1]$.
Each lecture generates no immediate utility, but does give a future benefit $V$. Using a laptop reduces the long-run benefit by $D$. Both $V$ and $D$ are the same for all students.

In summary, a student that uses a laptop in class gets immediate utility $L_{i}$ and future (undiscounted) utility $V-D$. A student that does not use a laptop gets immediate utility 0 and future (undiscounted) utility $V$.

The social planner is not present biased and seeks to maximize the utility of 14.13 students.

## Present bias

1(a). Show that a student $i^{*}$ is just indifferent between using and not using their laptop in the current class if $L_{i^{*}}=\beta D$. Explain why students with lower values of $L_{i}$ (i.e. $L_{i}<\beta D$ ) don't use laptops in class, while students with higher values of $L_{i}\left(\right.$ i.e. $\left.L_{i}>\beta D\right)$ do use laptops in class.

## Present bias, cont'd

Utilities from the two choices are:

$$
\begin{aligned}
U(\text { laptop }) & =L_{i}+\beta \delta(V-D) \\
U(\text { nolaptop }) & =0+\beta \delta V
\end{aligned}
$$

For students that are indifferent, $U$ (laptop) $=U$ (nolaptop). This gives:

$$
\begin{aligned}
L_{i^{*}}+\beta \delta(V-D) & =0+\beta \delta V \\
L_{i^{*}} & =\beta \delta D
\end{aligned}
$$

Students that choose not to use laptops will have low valuations of using laptops, while students that choose to use laptops will have higher valuations. Given the indifference condition and $\delta=1$,

- Students $i$ that do not use laptops: $L_{i}<\beta D$
- Students $i$ that use laptops: $L_{i}>\beta D$


## Present bias, cont'd

1(b). Now consider the policy that allows students to use laptops only if they sign up in advance to sit in a laptop section. Why is $L_{i} \geq D$, not $L_{i} \geq \beta D$, the threshold for opting into the laptop section?

## Present bias, cont'd

Solution to 1(b)

Considered in advance, students evaluate:

$$
\begin{aligned}
U(\text { laptop }) & =0+\beta\left(\delta L_{i}+\delta^{2}(V-D)\right) \\
U(\text { nolaptop }) & =0+\beta \delta^{2} V
\end{aligned}
$$

The threshold for opting in is defined by $U$ (laptop) $\geq U$ (nolaptop). Using $\delta=1$, this gives:

$$
\begin{aligned}
0+\beta\left(L_{i}+V-D\right) & \geq 0+\beta V \\
L_{i} & \geq D
\end{aligned}
$$

The threshold changes from $\beta D$ to $D$ because when laptop use can only happen in the future, all benefits and costs are discounted at the same rate, $\beta$.

## Present bias, cont'd

1 (c). Assume there is no laptop policy. Show that if $\beta D<L_{i}<D$, the student $i$ engages in preference reversals: she prefers not to use the laptop in future classes, but changes her mind when she's actually sitting in those future classes.

- When thinking about future laptop use, the student's problem is identical to the problem in part (b). Why?
- Because she discounts time both one and two periods in advance by $\beta$
- We know from part (b) that if $L_{i}<D$, she would like to not use the laptop
- But from part (a), we know that if $\beta D<L_{i}$, she will end up using the laptop when she's actually sitting in the future class
- This implies a preference reversal! she prefers not to use the laptop in future classes, but switches her mind when she's actually sitting in those future classes.


## Present bias, cont'd

1(d). Explain why fraction $1-\beta D$ of the class uses a laptop in part 1 , but fraction $1-D$ of the class uses a laptop in part 2 . Why does a smaller share of the class use their laptops in part 2?

## Present bias, cont'd

Solution to 1 (d)

In part 1, a student uses a laptop if $L_{i}>\beta D$. Define $F(\cdot)$ as the CDF of $L_{i}$. Given the uniform distribution:

$$
\begin{aligned}
P\left(L_{i}>\beta D\right) & =1-F(\beta D) \\
& =1-\beta D
\end{aligned}
$$

Likewise, in part 2, a student uses a laptop if $L_{i}>D$. We have:

$$
\begin{aligned}
P\left(L_{i}>D\right) & =1-F(D) \\
& =1-D
\end{aligned}
$$

A smaller share will use laptops in part 2 because the benefit of using a laptop is delayed and hence discounted by $\beta$.

## Present bias, cont'd

1(e). Why would the social planner prefer the opt-in policy to both the policy of allowing students to choose whether to use their laptops and to banning laptops altogether?

- The planner is not present biased so would want only students with $L_{i}>D$ to use laptops; the opt-in policy achieves this
- Under the free choice policy, students with $\beta D<L_{i}<D$ will suboptimally use their laptops
- On the other hand, banning laptops altogether is suboptimal because welfare is gained by allowing the students with the highest valuations, $L_{i}>D$, use laptops


## Long Question, Example 2

Reference dependence

Frank has reference-dependent preferences over donuts $d$ and coffee $k$, which cost $\$ 1$ each. MIT gives him $\$ 13$ to spend at the coffee shop. His utility takes the form

$$
u(d, k)=u_{1}(d-6)+u_{2}(k-2)
$$

where

$$
u_{1}(x)= \begin{cases}2 \sqrt{x} & \text { if } x \geq 0  \tag{1}\\ -4 \sqrt{|x|} & \text { if } x<0\end{cases}
$$

and

$$
u_{2}(x)= \begin{cases}\sqrt{x} & \text { if } x \geq 0  \tag{2}\\ -2 \sqrt{|x|} & \text { if } x<0\end{cases}
$$

2(a). If Frank has six donuts, is Frank loss averse to changes in his donut supply? Yes!

## Reference dependence

2(b). Frank buys a positive number of donuts and a positive number of coffees. How many donuts and coffee should Frank buy?

Answer: the Lagrangian is

$$
\mathcal{L}(d, k, \lambda)=u_{1}(d-6)+u_{2}(k-2)+\lambda \cdot(13-d-k)
$$

When $d, k>0$, then

$$
\frac{\partial u_{1}}{\partial d}=(d-6)^{-1 / 2}=\lambda
$$

and

$$
\frac{\partial u_{2}}{\partial k}=\frac{1}{2}(k-2)^{-1 / 2}=\lambda .
$$

Then $d-6=\lambda^{-2}$ and $k-2=2^{-2} \lambda^{-2}$, so $4(k-2)=d-6$.
And $k+d=13$. So

$$
4 k-8=d-6=13-k-6
$$

so that $5 k=21-6$ or $k=3$ and $d=10$.
Frank's utility is $u(10,3)=2 \sqrt{4}+\sqrt{1}=5$.

## Reference dependence, cont'd

2(c). Someone tells Frank that they eat fewer than six donuts per day; specifically, they eat two donuts. Frank decides he should cut back his reference point to two donuts, as a benchmark. His new preferences are

$$
u(d, k)=u_{1}(d-2)+u_{2}(k-2)
$$

Is Frank happier?
Yes! $u_{1}(d-2)>u_{1}(d-6)$ for all $d$.

## Reference dependence, cont'd

2(d). Frank has bought his donuts and returned to his office. A doctor arrives from MIT Medical. Frank has a suspicion that the doctor will prescribe any desired level of donuts, $\bar{d} \geq 0$, that he asks. Frank's preferences then will become

$$
u(d, k)=u_{1}(d-\bar{d})+u_{2}(k-2) .
$$

What does Frank ask the doctor to prescribe?
Frank's utility is always diminishing in $\bar{d}$, his reference level for donuts! He asks the doctor to prescribe $\bar{d}=0$.

2(e). Now the doctor demands payment for his medical wisdom. How much is Frank's maximum willingness to pay the doctor for these new preferences?

Frank's utility rises to $2 \sqrt{10}$ from $2 \sqrt{10-6}$, so he is willing to pay $2(\sqrt{10}-\sqrt{4})$.

## Reference dependence, cont'd

2(f). Suppose that the doctor is receiving payments from the donut industry and can only prescribe $\bar{d}=1$, but will now also give Frank a machine that allows him to costlessly transform donuts into coffee and vice-versa. How much is Frank now willing to pay the doctor (in utils)?

If Frank can revise his consumption, his first-order conditions become

$$
4(k-2)=d-1
$$

or

$$
4 k-8=13-k-1
$$

so that $5 k=20$, or $k=4$ and $d=9$.
$\therefore$ With the time machine and $\bar{d}=1$, Frank will obtain
$2 \sqrt{9-1}+\sqrt{4-2}=2 \sqrt{8}+\sqrt{2}=5 \sqrt{2}$.
$\therefore$ Frank's WTP $\leq 5 \sqrt{2}-5$.

MIT OpenCourseWare
https://ocw.mit.edu/
14.13: Psychology and Economics

Spring 2020

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

