Recitation 11: Discrimination
Draws on notes by David Autor and by Devin Pope

Alex Olssen and Maddie McKelway
Outline

1 Taste-Based vs. Statistical Discrimination

2 Inaccurate Statistical Discrimination (Bohren et al. (2019))

3 Reducing Discrimination
Outline

1 Taste-Based vs. Statistical Discrimination

2 Inaccurate Statistical Discrimination (Bohren et al. (2019))

3 Reducing Discrimination
Taste-Based Discrimination: Becker 1957

- “Taste for discrimination”: employers get disutility from hiring women, f, but not men, m
- Employers maximize their utility, which is profit minus a cost for employing women

$$U = pF(N_m + N_f) - w_m N_m - w_f N_f - dN_f$$

- p is the price of the good that the firm makes
- F is the production function of the firm
- w_x is the wage for group x
- N_x is the number of employees of group x
- d is the taste-based discrimination parameter
Taste-Based Discrimination: Wage Discrimination

- Employers solve
 \[
 \max_{N_m, N_f} pF(N_m + N_m) - w_m N_m - w_f N_f - dN_f
 \]

- First–order conditions
 \[
 pF' = w_m \text{ and } pF' = w_f + d
 \]

- Prejudiced employers \((d > 0)\) only hire women if
 \[
 w_m \geq w_f + d
 \]

- Why? Women and men are perfect substitutes in production, and the effective women’s wage for prejudiced employers is \(w_f + d\). If they hire women, men's wages must be at least as high as this effective wage for women.
Suppose that different employers have different values for d

If there are a lot of prejudiced employers ($d > 0$), then:
- There are women who work for prejudiced employers
- There is a wage gap for these women: $w_f = w_{rm} - d$
- If markets are competitive, then non-prejudiced employers will grow (because they can arbitrage the wage gap)
- If markets are competitive, prejudiced employers will make less profit
Statistical Discrimination: Aigner and Cain (1977)

- Distinct from taste-based discrimination
- Employers observe a noisy measure, y, of true productivity, q
- Thus employers may want to use observable characteristics (e.g., gender) to infer expected productivity (assuming productivity is correlated with gender)
- A simple case:

\[
\begin{align*}
 y &= q + u \\
 q &\sim N(\alpha, \sigma_q^2) \\
 u &\sim N(0, \sigma_u^2) \\
 q \text{ and } u \text{ are independent}
\end{align*}
\]
Statistical Discrimination: Wage Discrimination

- Employers infer average productivity q based on measure y

$$E(q|y) = (1 - \gamma)\alpha + \gamma y$$

with $\gamma = \frac{\sigma_q^2}{\sigma_q^2 + \sigma_u^2}$

- Comes from property of bivariate normal distribution

- Suppose that women are more productive than men: specifically, $q_f \sim N(\alpha_f, \sigma_q^2)$ and $q_m \sim N(\alpha_m, \sigma_q^2)$ with $\alpha_f > \alpha_m$

- Suppose employers pay workers their expected productivity: a man and a woman who have measured productivity y are paid $(1 - \gamma)\alpha_m + \gamma y$ and $(1 - \gamma)\alpha_f + \gamma y$ respectively

 - There is equal pay for equal expected productivity.
 - There is not equal pay for equal productivity.
 - There is not equal pay for equal measured productivity.

 - Even if y is the same, the wage gap is $(1 - \gamma)(\alpha_f - \alpha_m)$

 - Subtle point: each group is paid its average productivity
Taste-Based and Statistical Explanations

What are taste-based and statistical explanations for the following?

- An American tourist gets quoted higher prices at foreign flea markets
- A teenager receives a low number of callbacks for job applications
- A woman receives a high quote from a car mechanic
Testing for Discrimination

- Many approaches to testing for discrimination (not all distinguish taste-based from statistical)
- Two approaches to documenting discrimination from Frank’s lecture
 - Correspondence studies
 - Quasi–experiments
- Another approach to distinguishing taste-based and statistical discrimination:
 - Look for differences in productivity across groups
 - If none, then infer discrimination is taste-based
 - If productivity differences exist, then are they large enough to explain discrimination?
 - What might be a potential problem with this approach?
Outline

1 Taste-Based vs. Statistical Discrimination

2 Inaccurate Statistical Discrimination (Bohren et al. (2019))

3 Reducing Discrimination
Inaccurate Statistical Discrimination: Bohren et al. (2019)

- Recent papers distinguish between accurate and inaccurate statistical discrimination.
- If we ignore possibility of inaccurate statistical discrimination, we may incorrectly understand discrimination:
 - Suppose we study wage discrimination
 - We look at the productivity for the majority and minority group and find no differences
 - Suppose we only consider taste-based and (classical) statistical discrimination
 - Cannot be (classical) statistical discrimination because there are no underlying differences in productivity (so group is not correlated with productivity)
 - However, employers may falsely believe there are productivity differences
- Bohren et al. (2019) run an experiment and show that inaccurate statistical discrimination can be falsely interpreted as taste-based discrimination.
Inaccurate Statistical Discrimination: The Experiment

Overview of the experiment

- 589 workers from India and the USA do a 50 question math test
- 577 employers shown 20 worker profiles and asked how much they would pay each
- Sample profile:
 - Country: USA
 - Gender: Female
 - Age: 63
 - Favorite High School Subject: English
 - Favorite Sport: Gymnastics
 - Favorite Color: Sea Green
 - Favorite Movie: Overboard
 - Prefers Tea/Coffee: Tea

- If an employer hires a worker, they are paid proportionally to the number of correct questions
- Last, ask employers questions about beliefs
 - “On average, how many math questions out of 50 do you think X answered correctly?”
 - X is, for example, people from India
Inaccurate Statistical Discrimination: Results

- First, employers discriminate: Indians and men receive higher wage offers
- In this experiment, workers from India and the USA perform equally well on the math test (no productivity differences)
- This rules out (classical) statistical discrimination
- So are employers prejudiced against workers from the USA?
- Using belief elicitation survey, they find employers mistakenly believed that workers from India would perform far better than workers from the USA
- Accounting for these productivity beliefs, there is taste-based discrimination against workers from India
- How could we reduce inaccurate statistical discrimination?
- Bohren et al. provide information on average math score and it reduces discrimination
Outline

1. Taste-Based vs. Statistical Discrimination

2. Inaccurate Statistical Discrimination (Bohren et al. (2019))

3. Reducing Discrimination
Reducing Discrimination

How might we reduce discrimination?

Some possibilities:
- Laws, e.g., Civil Rights Act of 1964
- Policies, e.g., blind interviewing
- Algorithms
- Intergroup contact, e.g., Rao 2019
- Defaults that reduce discretion
- Others?