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Solving Problems with (Quasi-)Hyperbolic Discounting 

Fully näıve decision-makers ( � ˆ = 1): 
(1) 

(2) 
(3) 
(4) 

Start at the beginning. 
Solve for the optimal plan, assuming future selves will follow the plan. 
The person takes the frst step in that plan. 
Go to the next period, and keep doing the same. 

Fully sophisticated decision-makers ( � ˆ = �): 
(1) 
(2) 
(3) 
(4) 
(5) 

Start at the end. 
Solve for optimal action. 
Go back to the previous period. 
Solve for the optimal action, taking into account what happens in the next period. 
Go back to the previous period, and keep doing the same. 

Partially nä � < 1): ıve decision-makers (� < ̂

(1) 

(2) 
(3) 

(4) 

Start at the end. Solve for what the person thinks she will do (using �̂). 
[This is like solving for a fully sophisticated decision maker with a true � of �̂.] 
Work your way to the frst period using backward induction until period 2 (using �̂). 
Then solve for the optimal action in period 1 (using the true � and the already derived prediction 
on future behavior). 
Then move to the next period, repeat steps (1) to (3). 
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The Model: Illiquid savings, credit card debt, commitment 

Alex is a fully naive hyperbolic discounter with � = 0.5 and � = 1 and � ˆ = 1 
Alex lives for three periods t = 0, 1, and 2 
His instantaneous utility from consuming an amount ct > 0 at time t is 

u(ct ) = ln(ct ) for t = 0, 1, 2 
Alex’s discounted lifetime utility from the perspective of period 0 is given by 

U0(c0, c1, c2) = ln(c0) + �(ln(c1) + ln(c2)) 
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Moving money across periods (Q1.1) 

Alex starts with wealth of $60 at t = 0 
Several ways to move money across periods 

Checking account: put $x in at time t, can withdraw up to $x at t + 1 
Retirement account: deposit s at t = 0, can withdraw (1 + r r )s at t = 2 
(r r = .2) 
Credit card for t = 1: borrow b at t = 1, must repay (1 + r c )b at t = 2 
(r c = .5) 

How will Alex move money to t = 1? How about t = 2? Why? 
To move money to t = 1, use checking account because alternative (credit 
card paid o� at t = 2) is expensive 
To move money to t = 2, use retirement savings because get a good return! 
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Optimal plan at t = 0 (Q1.2) 

Show that the consumption plan Alex makes at t = 0 involves c1 = �c0 

Given the previous answer, interest rate of 0 between t = 0 and t = 1 
Accordingly, he will equalize marginal utilities at t = 0 and t = 1 
Direct implication c1 = �c0 (let’s work through the FOCs) 
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Optimal plan at t = 0 (Q1.3) 

Use (1) and (2), write Alex’s maximization problem in period 0 and solve for 
planned c0, c1, and c2 

Part (2) means c1 = �c0 at the optimum. Part (1) means we can ignore b. Thus 

maxc0,c1,c2 u(c0) + �u(c1) + �u(c2) 
s.t. c1 = �c0 and c2 = (60 − c0 − c1)(1 + r r ) 

Solution: c0 
� = 30, ĉ1 = 15, and ĉ2 = 18 (Let’s work through FOCs) 
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Present Bias (Q1.4) 

What does Alex end up doing at t = 1? 
Being naive, at t = 1 Alex solves 

maxc1,c2 u(c1) + �u(c2) s.t. c2 = ĉ2 − (c1 − ĉ1)(1 + r c ) 
Taking the FOC and simplifying gives 

1 �(1+rc ) = c1 c2 
c2 = �(1 + r c )c1 

Solution: c1 
� = 18, b� = 3, and c2 

� == 13.5 
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Full Sophistication (Q1.9) 

Suppose Alex becomes fully sophisticated. 
Argue that at t = 0, Alex anticipates that at t = 1 he will choose c1 and c2 such 
that c2 = �(1 + r c )c1. 
Being sophisticated, Alex understands that he will solve his consumption-savings 
decision in exactly the same way as already determined in (Q1.4) 
Recall that (Q1.4) was c2 = �(1 + r c )c1 
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Full Sophistication (Q1.10) 

Write down Alex’s maximization problem at t = 0. Explain what is di�erent from 
Alex’s maximization problem in part (3) and why 
Alex solves the following maximization problem: 

maxc0,c1,c2 u(c0) + �u(c1) + �u(c2) 
s.t. c2 = �(1 + r c )c1 and c2 = (60 − c0 − c1)(1 + r r ) 

Fully sophisticated Alex knows he lacks time consistency 
Thus he solves his t = 0 problem with constraints that refect his knowledge that he 
will re-optimize in the future 
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Commitment devices (Q1.11) 

Aaron o�ers (fully sophisticated) Alex a commitment device 
Can Alex be worse o� (using discounted utility at t = 0) by (voluntarily) choosing 
any commitment contract that Aaron o�ers to him at t = 0? 
Solution: No, it is impossible for fully sophisticated Alex to be worse o�. 
A fully-sophisticated agent anticipates his/her future behaviors 
At t = 0 Alex makes plans that maximize his utility from the perspective of t = 0 
If Aaron’s commitment contract would make Alex worse o�, then he would never 
(voluntarily) choose it 
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Commitment devices (Q1.12) 

Suppose Alex is partially naive 
Can Aaron make Alex worse o� by o�ering him a commitment device (using 
discounted life-time utility at t = 0)? 
Yes, partially-sophisticated Alex can be worse o� even when (voluntarily) choosing. 
Suppose the commitment device raises r c at t = 1 above 50%. 
Alex might (voluntarily) choose the commitment device, hoping it will help him 
avoid borrowing. 
However, if � turns out to be (much) lower than anticipated, then he might end up 
borrowing at high interest rates after all 
This would make him worse o� than he would have been borrowing at a 50% 
interest rate 
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Expected Utility Theory 

Describes agents’ preferences and behavior when faced with uncertainty 
General lottery setup: 

Agent gets utility from wealth u(.) 
Potential states of the world: i 2 {1, ..., n} 
Each state has associated probabilities pi and monetary payout xi 

n
Expected value of lottery: EX = 

P 
pi xi 

i=1 
n

Expected utility of lottery: EU = 
P 

pi u(xi ) 
i=1 

n
Utility of the expected value: UE = u( 

P 
pi xi ) 

i=1 
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Risk Preferences 

Risk loving: EU > UE 
Prefers taking the lottery to receiving the expected value with certainty 

Risk neutral: EU = UE 
Indi�erent between taking the lottery and receiving the expected value with 
certainty 

Risk averse: EU < UE 
Prefers receiving the expected value with certainty to taking the lottery 

16



Curvature of u(.) 

n n
Jensen’s inequality: f (.) is concave i� f ( 

P 
wi yi ) > 

P 
wi f (yi ) 

i=1 i=1 
Risk preferences involve comparison between: 

n
EU = 

P 
pi u(xi ) 

i=1 
n

UE = u( 
P 

pi xi ) 
i=1 

This implies: 
Risk loving (EU > UE ) i� u(.) is convex 
Risk neutral (EU = UE ) i� u(.) is linear 
Risk averse (EU < UE) i� u(.) is concave 
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Risk Aversion and Certainty Equivalents 

Certainty equivalent: the level of x that would make the agent indi�erent 
between taking x and participating in the lottery 
Formally: 

n
u(CE ) = EU = 

P 
pi u(xi ) 

i=1 
nP 

CE = u−1(EU) = u−1( pi u(xi )) 
i=1 

Equivalent defnition of risk preferences: 
Risk loving if CE > EX 
Risk neutral if CE = EX 
Risk averse if CE < EX 
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Risk Aversion in a Picture 

Lottery with 2 outcomes: (1) x1 = x , p1 = p; (2) x2 = y , p2 = (1 − p) 

concavity
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Where is EX ? EU? UE? CE ? 
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CARA 

u00(x) Coeÿcient of absolute risk aversion: r = − u0(x) 
Normalized by u0(x) (why?) 

= − e−rx 
Constant absolute risk aversion (CARA) utility: u(x) r 

Absolute risk aversion is constant in x 

Problem: we typically believe wealthier people are riskier so risk aversion 
should be decreasing in x 
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CRRA 

= − xu00(x) Coeÿcient of relative risk aversion:  u0(x) 

Constant relative risk aversion (CRRA) utility: u(x) = x
1

1

−
−

 

 

CRRA utility generates constant relative risk aversion 
CRRA utility generates absolute risk aversion that is decreasing in wealth 
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Risk Aversion Takeaways 

Expected utility is (another) work horse model in economics 
Important distinction between the expected value of an uncertain lottery and 
the expected utility 
Risk aversion explains why people want insurance (some of the biggest 
markets in the economy are insurance markets) 
CARA and CRRA utility functions are common special cases (worth knowing) 
For further reading, see David Autor’s notes on Stellar (Review notes (3/3) 
risk preferences) 
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