6.207/14.15: Networks
 Lectures 7: Information Spread, Distributed
 Computation

Outline

Information spread.
Conductance determines how long.

Distributed computation.
Equals information spread.

Markov chain convergence.
Spectral gap and conductance.

References:
Shah, Chapter 3 (3.1-3.2), Chapter 5 (5.1-5.2)

Information spread

Network graph G over $N=\{1, \ldots, n\}$ nodes, edges E
Given information at one of the nodes, spread it to all nodes
By "Gossiping"
How long does it take?

Gossip dynamics:
At each time, each node $i \in N$ does the following:
if node i does not have information, nothing to spread or gossip else if it does have information, it sends it to one of it's neighbors
let $P_{i j}=\mathbb{P}(i$ sends information to $j)$
by definition, $\sum_{j \in N} P_{i j}=1$, and
$P_{i j}=0$ if j is not neighbor of i
Example: uniform gossip

$$
P_{i j}=1 / k_{i} \text { for all }(i, j) \in E
$$

Information spread

Why study Gossip dynamics
This is how socially information spreads
More generally, this is how "contact" driven network effect spreads
This is how large scale distributed computer systems are built e.g. Cassandra, an Apache Open Source Distributed DataBase used by some of the largest organizations including Netflix, etc.

Key question
How long does it take for all nodes to receive information?
How does it depend on the graph structure, P ?

Information spread

Let us consider few examples:
Ring graph
Star graph
Complete graph

Information spread

Key question
How long does it take for all nodes to receive information? How does it depend on the graph structure, P ?

A crisp answer

$$
\mathrm{T}_{\mathrm{spr}} \sim \frac{\log n}{\Phi(P)}
$$

where $\Phi(P)$ is the conductance of P (and hence graph)

Conductance

Conductance of $P=\left[P_{i j}\right]$ is defined as

$$
\begin{equation*}
\Phi(P)=\min _{S \subset N:|S| \leq n / 2} \frac{\sum_{i \in S, j \in S^{c}} P_{i j}}{|S|} \tag{1}
\end{equation*}
$$

Examples: uniform gossip
Ring graph: $\Phi \sim 1 / n$
Star graph: $\Phi \sim 1 / n$
Complete graph: $\Phi \sim 1$

Conductance and Information spread

Let us consider how information spreads
Let $S(k) \subset N$ be nodes that possess information at time k Initially, $S(1)=\{i\}$ for some $i \in N$
Consider $j \notin S(k)$. Then $j \in S(k+1)$ some $\ell \in S(k)$ contacts it

- Therefore,

$$
\begin{aligned}
\mathbb{P}(j \in S(k+1) \mid j \notin S(k)) & =1-\mathbb{P}(j \notin S(k+1) \mid j \notin S(k)) \\
& =1-\mathbb{P}\left(\cap_{\ell \in S(k)} \ell \text { does not contact } j\right) \\
& =1-\prod_{\ell \in S(k)} \mathbb{P}(\ell \text { does not contact } j) \\
& =1-\prod_{\ell \in S(k)}\left(1-P_{\ell j}\right) \\
& \approx \sum_{\ell \in S(k)} P_{\ell j}
\end{aligned}
$$

Conductance and Information spread

In summary:

$$
\mathbb{E}[|S(k+1)| \quad|S(k)| \mid S(k)] \approx \sum_{j \notin S(k)} \sum_{\ell \in S(k)} P_{\ell j}
$$

Therefore:

$$
\begin{aligned}
\mathbb{E}[|S(k+1)| \mid S(k)] & \approx|S(k)|+\sum_{j \notin S(k)} \sum_{\ell \in S(k)} P_{\ell j} \\
& \approx|S(k)|\left(1+\frac{\sum_{j \notin S(k)} \sum_{\ell \in S(k)} P_{\ell j}}{|S(k)|}\right) \\
& \geq|S(k)|\left(1+\min _{S \subset N} \frac{\sum_{j \notin S} \sum_{\ell \in S} P_{\ell j}}{|S|}\right)
\end{aligned}
$$

Conductance and Information spread

Continuing:

$$
\mathbb{E}[|S(k+1)| \mid S(k)] \geq|S(k)|\left(1+\min _{S \subset N} \frac{\sum_{j \notin S} \sum_{\ell \in S} P_{\ell j}}{|S|}\right)
$$

If $S(k) \leq n / 2$, then we can restrict for $S \subset N$ s.t. $|S| \leq n / 2$ Using definition of conductance

$$
\begin{aligned}
\mathbb{E}[|S(k+1)| \mid S(k)] & \geq|S(k)|(1+\Phi(P)) \\
& \geq|S(1)|(1+\Phi(P))^{k} \\
& \approx \exp (k \Phi(P)) .
\end{aligned}
$$

Therefore, approximately it takes $\frac{\log n}{\Phi(P)}$ steps to reach $n / 2$ nodes

Conductance and Information spread

Spreading time
Invoking symmetries to go from $n / 2$ to n nodes
Using a little sophisticated probabilistic analysis
And some, it can be concluded that

$$
\mathrm{T}_{\mathrm{spr}} \sim \frac{\log n}{\Phi(P)}
$$

where $\Phi(P)$ is the conductance of P (and hence graph)

In general, it is the information bottleneck: the information spread takes $1 / \Phi(P)$

Distributed computation

Generic question

Given network G over nodes N with edges E
Each node $i \in N$ has information x_{i}
Compute a global function:

$$
f\left(x_{1}, \ldots, x_{n}\right)
$$

by communicating along the network links
processing local information at each of the node continually
while keeping limited local state at each node

Distributed computation

The simplest possible example
(estimate) number of nodes in the network at each node locally
there is no globally agreed unique names for each node
only local communications are allowed while keeping local state small

Well, we can play a game to understand this
Let's figure out how many students are there in this class?

Know your neighbors

A distributed algorithm
Every node generates a random number
Node $i \in N$ draws random variable R_{i} as per an Exponential distribution of mean 1
(in Python: import random; random.expovariate(1))
Compute global minimum, $R^{\star}=\min _{i \in N} R_{i}$
Using Gossip mechanism
Repeat the above for L times
$R_{\ell}^{\star}, \quad 1 \leq \ell \leq L$ be global minimum computed during these L trials
Estimate of number of neighbors

$$
\hat{n}=\frac{L}{\sum_{l=1}^{L} R_{\ell}^{\star}}
$$

Exponential distribution

Exponential distribution with parameter $\lambda>0$

- X be random variable with this distribution: for any $t \in \mathbb{R}$,

$$
\mathbb{P}(X>t)=\exp (-\lambda t)
$$

- Minimum of exponential random variables
- Let $X_{i}, i \in N$ be independent random variables
- Distribution of X_{i} is Exponential with parameter $\lambda_{i}, i \in N$
$-X^{*}=\min _{i \in N} X_{i}$

$$
\begin{aligned}
\mathbb{P}\left(X^{*}>t\right) & =\mathbb{P}\left(\cap_{i \in N} X_{i}>t\right) \\
& =\prod_{i \in N} \mathbb{P}\left(X_{i}>t\right) \\
& =\prod_{i \in N} \exp \left(-\lambda_{i} t\right) \\
& =\exp \left(-\left(\sum_{i} \lambda_{i}\right) t\right) .
\end{aligned}
$$

Exponential distribution

- Exponential distribution with parameter $\lambda>0$
- X be random variable with this distribution: for any $t \in \mathbb{R}$,

$$
\mathbb{P}(X>t)=\exp (-\lambda t) .
$$

- Minimum of exponential random variables
$-X^{*}=\min _{i \in N} X_{i}$ has exponential distribution with parameter $\sum_{i \in N} \lambda_{i}$
- Mean of exponential variable X with parameter $\lambda>0$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} \mathbb{P}(X>t) d t \\
& =\int_{0}^{\infty} \exp (-\lambda t) d t \\
& =\frac{1}{\lambda}[\exp (-\lambda t)]_{\infty}^{0} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Exponential distribution

Back to counting nodes
Node i's random number has exponential distribution of parameter 1
All nodes computed minimum of these numbers
Hence minimum had exponential distribution with parameter n
That is, mean of the minimum is $1 / n$
Averaging over multiple trials gives a good estimation of $1 / n$

Adding up numbers
Node i has a number x_{i}
Node i draws random variable per exponential distribution of parameter x_{i}
Then minimum would have exponential distribution with parameter
$\sum_{i} x_{i}$
Subsequently, algorithm is computing estimation of $\sum_{i} x_{i}$

Computing minimum

Gossip algorithm
Node $i \in N$ has value R_{i} and goal is to compute $R^{\star}=\min _{i} R_{i}$
Node $i \in N$ keeps an estimate of global minimum, say \hat{R}_{i}^{\star}
Initially, $\hat{R}_{i}^{\star}=R_{i}$ for all $i \in N$
Whenever node j contacts i
Node j sends \hat{R}_{j}^{\star} to i
Node i updates $\hat{R}_{i}^{\star}=\min \left(\hat{R}_{j}^{\star}, \hat{R}_{i}^{\star}\right)$

How long does it take for everyone to know minimum?
Suppose $R_{1}=R^{\star}$.
Then the spread of minimum obeys exactly same dynamics as
Spreading information starting with node!
That is, information spread $=$ minimum computation!

Distribution computation $=$ Information spread

Distribution computation
Given network G over nodes N with edges E
Each node $i \in N$ has information x_{i}
Goal is to compute a global function

$$
f\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} f_{i}\left(x_{i}\right)
$$

Gossip algorithm
P be gossip probability matrix over G
Computing $f(\cdot)$ via multiple minimum computation
For $(1 \pm \varepsilon) f(\cdot)$ estimation, need $1 / \varepsilon^{2}$ computations

$$
T_{\text {dist-comp }} \sim \frac{1}{\varepsilon^{2}} T_{\min }
$$

And time to compute minimum, $T_{\text {min }}$ is information spread

$$
T_{\min }=T_{\text {spr }} \sim \frac{\log n}{\Phi(P)}
$$

Markov chain

Properties of a Markov chain
P be probability transition matrix
Assume it be irreducible and aperiodic
By Perron-Frobenius theorem
The largest eigenvalue $\lambda_{1}=1$

$$
\text { And }\left|\lambda_{2}\right|<\lambda_{1}=1
$$

Define gap $g(P)=1-\left|\lambda_{2}\right|$

For simplicity, assume $P=P^{T}$
By definition, for any $P, P \mathbf{1}=\mathbf{1}$
Since $P=P^{T}$, we have $P^{T} \mathbf{1}=\mathbf{1}$
That is, $\frac{1}{n} \mathbf{1}$ is stationary distribution

Markov chain

Dynamics

Let $p(k)$ be probability distribution at time k

$$
p(k+1)=P^{T} p(k)
$$

Let $\mathbf{1}, s_{2}, \ldots, s_{n}$ be eigenvectors of P^{T} with associated eigenvalues $1, \lambda_{2}, \ldots, \lambda_{n}$ $0 \leq\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{2}\right|<1$

Then, as argued for linear dynamics, we have

$$
p(k)=c_{1} \mathbf{1}+\sum_{i=2}^{n} \lambda_{i}^{k} c_{k} s_{k}
$$

with some constants c_{1}, \ldots, c_{n}

Markov chain

Dynamics (continuing)
Therefore:

$$
\begin{aligned}
\left\|p(k)-c_{1} \mathbf{1}\right\| & \leq \sum_{i=2}^{n}\left|\lambda_{i}\right|^{k}\left|c_{i}\right|\left\|s_{i}\right\| \\
& \leq(n-1) C\left|\lambda_{2}\right|^{k}
\end{aligned}
$$

where $C=\max _{i=2}^{n}\left|c_{i}\right|\left\|s_{i}\right\|$
Subsequently

$$
k \geq \frac{\log n+\log C+\log \frac{1}{\varepsilon}}{\log \frac{1}{\left|\lambda_{2}\right|}} \Rightarrow\left\|p(k)-c_{1} \mathbf{1}\right\| \leq \varepsilon
$$

Markov chain

Convergence
The ε-convergence time scales as

$$
T_{\text {conv }}(\varepsilon) \sim \frac{\log n+\log \frac{1}{\varepsilon}}{\log \frac{1}{\left|\lambda_{2}\right|}}
$$

Using $\log (1-x) \approx-x$ for $x \in(0,1)$, we get

$$
\begin{aligned}
\log \frac{1}{\left|\lambda_{2}\right|} & =-\log \left|\lambda_{2}\right|=-\log \left(1-\left(1-\left|\lambda_{2}\right|\right)\right) \\
& =-\log (1-g(P)) \approx g(P)
\end{aligned}
$$

That is, the ε-convergence time scales as

$$
T_{\text {conv }}(\varepsilon) \sim \frac{\log n+\log \frac{1}{\varepsilon}}{g(P)}
$$

Markov chain

(Spectral) gap and conductance
Markov chain can not converge faster than information spread And information spreads in time $1 / \Phi(P)$
That is (ignoring constants)

$$
\frac{1}{\Phi(P)} \leq \frac{1}{g(P)} \quad \Leftrightarrow \quad g(P) \leq \Phi(P)
$$

A remarkable fact known as Cheeger's inequality:

$$
\frac{1}{2} \Phi(P)^{2} \leq g(P) \leq 2 \Phi(P)
$$

MIT OpenCourseWare
https://ocw.mit.edu

14.15J/6.207J Networks

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

