
6.207/14.15: Networks 
Lectures 7: Information Spread, Distributed 

Computation 
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Networks: Lecture 7 Outline 

Outline 

Information spread. 
Conductance determines how long. 

Distributed computation. 
Equals information spread. 

Markov chain convergence. 
Spectral gap and conductance. 

References: 
Shah, Chapter 3 (3.1-3.2), Chapter 5 (5.1-5.2) 
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Networks: Lecture 7 Information spread 

Information spread 

Network graph G over N = {1, . . . , n} nodes, edges E 
Given information at one of the nodes, spread it to all nodes 
By “Gossiping” 
How long does it take? 

Gossip dynamics: 
At each time, each node i 2 N does the following: 
if node i does not have information, nothing to spread or gossip 
else if it does have information, it sends it to one of it’s neighbors 

let P
ij = P(i sends information to j) 

by definition, Â
j2N Pij = 1, and 

P

ij = 0 if  j is not neighbor of i 
Example: uniform gossip 

P

ij = 1/k
i for all (i , j) 2 E 
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Networks: Lecture 7 Information spread 

Information spread 

Why study Gossip dynamics 

This is how socially information spreads 

More generally, this is how “contact” driven network e↵ect spreads 

This is how large scale distributed computer systems are built 
e.g. Cassandra, an Apache Open Source Distributed DataBase 
used by some of the largest organizations including Netflix, etc. 

Key question 
How long does it take for all nodes to receive information? 
How does it depend on the graph structure, P? 
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Networks: Lecture 7 Information spread 

Information spread 

Let us consider few examples: 

Ring graph 

Star graph 

Complete graph 
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Information spread 

Key question 
How long does it take for all nodes to receive information? 
How does it depend on the graph structure, P? 

A crisp  answer

log n 
Tspr ⇠ 

F(P)

where F(P) is the conductance of P (and hence graph) 
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Networks: Lecture 7 Information spread 

Conductance 

Conductance of P = [P
ij ] is defined as 

Â
i2S ,j2Sc P

ijF(P) = min (1) 
S⇢N :|S |n/2 |S |

Examples: uniform gossip 

Ring graph: F ⇠ 1/n

Star graph: F ⇠ 1/n

Complete graph: F ⇠ 1
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Networks: Lecture 7 Information spread 

Conductance and Information spread 

Let us consider how information spreads 
Let S(k) ⇢ N be nodes that possess information at time k
Initially, S(1) =  {i} for some i 2 N 
Consider j 2/ S(k). Then  j 2 S(k + 1)

some ` 2 S(k) contacts it 

8 

� Therefore,

P(j 2 S(k + 1)|j 2/ S(k)) = 1� P(j 2/ S(k + 1)|j 2/ S(k))

= 1� P(\`2S(k) ` does not contact j)

= 1� ’
`2S(k)

P(` does not contact j)

= 1� ’
`2S(k)

(1� P`j )

⇡ Â
`2S(k)

P`j
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Networks: Lecture 7 Information spread 

Conductance and Information spread 

In summary: 

E[|S(k + 1)| |S(k)||S(k)] ⇡ Â Â P`j .
j2/S(k) `2S(k) 

Therefore: 

E[|S(k + 1)||S(k)] ⇡ |S(k)| + Â Â P`j
j2/S(k) `2S(k) 

⇣
1 + 

Â
j2/S(k) Â`2S(k) P`j

⌘

|S(k)|
⇣
1 + min 

Â
j2/S Â`2S P`j

⌘ 

S⇢N |S |
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⇡ |S(k)|

� |S(k)|
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Networks: Lecture 7 Information spread 

Conductance and Information spread 

Continuing: 
⇣
1 + min 

Â
j2/S Â`2S P`j

⌘ 

S⇢N |S |

If S(k)  n/2, then we can restrict for S ⇢ N s.t. |S |  n/2
Using definition of conductance 

Therefore, approximately it takes F
log 
(P
n 
) steps to reach n/2 nodes

10 

E[|S(k + 1)||S(k)] � |S(k)|

E[|S(k + 1)||S(k)] � |S(k)|
⇣
1+ F(P)

⌘

� |S(1)|
⇣
1+ F(P)

⌘
k

⇣
⇡ exp kF(P)

⌘
.
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Networks: Lecture 7 Information spread 

Conductance and Information spread 

Spreading time 

Invoking symmetries to go from n/2 to  n nodes 

Using a little sophisticated probabilistic analysis 

And some, it can be concluded that 

log n 
Tspr ⇠ 

F(P)

where F(P) is the conductance of P (and hence graph) 

In general, it is the information bottleneck: 
the information spread takes 1/F(P) 
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Networks: Lecture 7 Distributed computation 

Distributed computation 

Generic question 

Given network G over nodes N with edges E 

Each node i 2 N has information x
i

Compute a global function: 

f (x1, . . . , x
n

) 

by communicating along the network links 

processing local information at each of the node continually 

while keeping limited local state at each node 
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Networks: Lecture 7 Distributed computation 

Distributed computation 

The simplest possible example 

(estimate) number of nodes in the network at each node locally 

there is no globally agreed unique names for each node 

only local communications are allowed while keeping local state small 

Well, we can play a game to understand this 

Let’s figure out how many students are there in this class? 
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Networks: Lecture 7 Distributed computation 

Know your neighbors 

A distributed algorithm 
Every node generates a random number 

Node i 2 N draws random variable R
i as per an Exponential

distribution of mean 1 
(in Python: import random; random.expovariate(1)) 

Compute global minimum, R? = min
i2N Ri

Using Gossip mechanism 

Repeat the above for L times 
R

?, 1   `  L be global minimum computed during these L trials ` 

Estimate of number of neighbors 
n̂ = L 

ÂL 
`=1 R

?
` 
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Networks: Lecture 7 Distributed computation 

Exponential distribution 

Exponential distribution with parameter l > 0 
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�
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Networks: Lecture 7 Distributed computation 

Exponential distribution 

16 

� Exponential distribution with parameter l > 0
� X be random variable with this

�
distribution: for any t 2 R,

P
�
X > t = exp

�
� lt).

� Minimum of exponential random variables
� X

⇤ = min
i2N X

i

has exponential distribution with parameter Â
i2N l

i

� Mean of exponential variable X with parameter l > 0

E[X ] =
Z •

0
P(X > t)dt

=
Z •

0
exp

�
� lt)dt

=
1

l

h
exp

�
� lt)

i0
•

=
1

l
.
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Networks: Lecture 7 Distributed computation 

Exponential distribution 

Back to counting nodes 
Node i ’s random number has exponential distribution of parameter 1 
All nodes computed minimum of these numbers 
Hence minimum had exponential distribution with parameter n 
That is, mean of the minimum is 1/n 
Averaging over multiple trials gives a good estimation of 1/n 

Adding up numbers 
Node i has a number x

i

Node i draws random variable per exponential distribution of 

Then minimum would have exponential distribution with parameter 
parameter x

i

Â
i xi

Subsequently, algorithm is computing estimation of Â
i xi
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Networks: Lecture 7 Distributed computation 

Computing minimum 

Gossip algorithm 

i 

Node i 2 N has value R
i and goal is to compute R? = min

i Ri

Node i 2 N keeps an estimate of global minimum, say R̂? 

Initially, R̂? = R
i for all i 2 N 

Whenever node j contacts i 
R̂

? 
j

i 

Node j sends to i 
ˆ

⇣ 
ˆ ˆ

⌘
R

? = min R

? 
R

?
iji

Node i updates , 

How long does it take for everyone to know minimum? 
Suppose R1 = R? . 
Then the spread of minimum obeys exactly same dynamics as 

Spreading information starting with node! 
That is, information spread = minimum computation! 
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Networks: Lecture 7 Distributed computation 

Distribution computation = Information spread 

Distribution computation 
Given network G over nodes N with edges E 
Each node i 2 N has information x

i

Goal is to compute a global function 

f (x1, . . . , x
n

) = Â fi (xi )
i 

Gossip algorithm 
P be gossip probability matrix over G 
Computing f (·) via multiple minimum computation
For (1 ± #)f (·) estimation, need 1/#2 computations

1 ⇠ T

min#2 

And time to compute minimum, T
min is information spread 

log n 
T

min = T

spr ⇠ 
F(P)

19 

T

dist�comp

⇠
#
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Networks: Lecture 7 Markov chain 

Markov chain 

Properties of a Markov chain 
P be probability transition matrix 
Assume it be irreducible and aperiodic 
By Perron-Frobenius theorem 

The largest eigenvalue l1 = 1 
And |l2| < l1 = 1

Define gap g (P) = 1 – |l2|

For simplicity, assume P = P

T

By definition, for any P , P1 = 1 
Since P = P

T , we have  PT 1 = 1 
That is, 1 1 is stationary distribution

n 
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Networks: Lecture 7 Markov chain 

Markov chain 

Dynamics 
Let p(k) be probability distribution at time k 

p(k + 1) = P

T 
p(k) 

Let 1, s2, . . . , s
n be eigenvectors of PT

with associated eigenvalues 1, l2, . . . , l
n

0  |l
n

|    · · ·    |l2| < 1

Then, as argued for linear dynamics, we have 

n

p(k) = c11 + Â l
i

k 
c

k sk
i =2 

with some constants c1, . . . , c
n
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Networks: Lecture 7 Markov chain 

Markov chain 

Dynamics (continuing) 
Therefore: 

n

i=2

kp(k) – c11k   Â 
 
|l

i |k |c
i |ksi k

 (n – 1)C |l2|k

nwhere C = max =2 |ci |ksi ki

Subsequently 

22 

k �
log n+ logC

1

+ log 1
#

log l| 2|
) kp(k)� c11k  #.
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Networks: Lecture 7 Markov chain 

Markov chain 

Convergence 
The #-convergence time scales as 

log n + log 1#
T

conv (#) ⇠ . 
log 1

|l2|

Using log(1 – x) ⇡� x for x 2 (0, 1), we get

That is, the #-convergence time scales as 

log n + log 1#
T

conv (#) ⇠ 
g (P)

23 

log
1

|l2|
= � log |l2| = � log(1� (1� |l2|))

= � log(1� g(P)) ⇡ g(P)
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Markov chain 

(Spectral) gap and conductance 
Markov chain can not converge faster than information spread 
And information spreads in time 1/F(P) 
That is (ignoring constants) 

1 1  , g (P)  F(P)
F(P) g (P) 

A remarkable fact known as Cheeger’s inequality: 

1 
F(P)2  g (P)  2F(P).

2 
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