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Agenda

• Recap of last time, contagion and mean-field diffusion
• The configuration model
• Diffusion in random graphs
• Monopoly pricing with word-of-mouth communication 

Material not well-covered in one place. Some suggested reading: 
Jackson Chapter 7.2; “Word-of-Mouth Communication and 
Percolation in Social Networks,” A. Campbell; “Diffusion 
Games,” E. Sadler
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Binary Coordination with Local Interactions

Recall our simple game:

0 1

0 (q, q)  (0, 0)

1 (0, 0) (1 ≠ q, 1 ≠ q)

Two pure-strategy equilibria

Play simultaneously with many neighbors
• Choose 1 if at least fraction q of neighbors choose 1
• Myopic best response, can the action spread?

Cohesion can block contagion, but neighborhoods can’t grow too
fast
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Mean-Field Difusion

An alternative framework
• Distributional knowledge of the network structure
• Adopt behavior iff expected payoff exceeds cost

Bayes-Nash equilibrium of static game equivalent to steady-state
of mean-field dynamics
• Draw a new set of neighbors a every time step

Key phenomenon: tipping points

Relate steady state to network degree distribution
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Random Graphs

Today, a third approach
• Distributional knowledge of the network structure
• Diffusion through a fixed graph

People get exposed to something new
• Behavior, product, information...

Choose whether to adopt or pass it on

Stochastic outcomes, viral cascades
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A Few Examples

Spread of new products through referral programs

Spread of rumors about Indian demonetization policy (Banerjee
et al., 2017)

Spread of news stories on social media
• Maybe fake ones...

Spread of microfinance participation (Banerjee et al., 2013)
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Questions

Basic:
• How many people adopt?
• How quickly does it spread?
• Who ends up adopting?

Some implications:
• Targeted seeding
• Pricing strategies
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First: The Configuration Model

Recall the configuration model from the first half of the course
• This is how we will generate our networks

Start with n nodes, degree sequence d(n) = (d1, d2, ..., dn)
• Degree is number of neighbors a node has

Take a uniform random draw of graphs with the given degree
sequence

Look at limits as n æ Œ, large networks
• Assume {d(n)} converges in distribution and expectation to D
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The Configuration Model

Can think of D as a histogram
• P(D = k) is the fraction of nodes with degree k

Questions about the configuration model:
• What do the components look like?
• Is there a “giant” component?
• How big is it?
• How far are typical nodes from each other?

Key idea: branching process approximation
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Branching Process Approximation
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Branching Processes

Let Z œ c(N) be a probability distribution

Start from a single root note, realize offspring according to Z

Each node in the first generation realizes offspring independently 
according to Z

And so on...
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Branching Processes: Extinction

What is the probability that the process goes extinct?

• Total number of offspring is finite

Key tool: the generating function
Œÿ

g(s) =  P(Z = k)s k
k=0

Well-defined for k œ [0, 1]
Solve recursion: probability I go extinct is probability all my 
offspring go extinct

Œÿ
k 

› = P(Z = k)› = g(›)
k=0

Extinction probability is unique minimal solution to › = g(›)
• Survival probability „ = 1  ≠ ›
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Branching Processes: Growth Rate

Expected number of offspr
t

ing E[Z] © µ
• Generation t contains µ nodes in expectation

Write Zt for the random number of total offspring in generation t
• The process Yt © Z

µt
t is a martingale

By the martingale convergence theorem:
• As t æ Œ, Yt converges almost surely
• Implication: „ > 0 i µ > 1 (one exception: Z = 1 w.p.1)
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Connecting to the Random Graph

Heuristically, breadth first search starting from a random node
looks like a branching process
• The “characteristic branching process” T for the graph

Root realizes offspring according to D 

After the root, two corrections
• Friendship paradox
• Don’t double count the parent

Subsequent nodes realize offspring according to DÕ

= d) =  
P(D = d + 1) · (d + 1)P(DÕ

E[D]
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The Law of Large Networks

Define flk = P(|T | = k), Nk(G) the number of nodes in
components of size k, Li(G) the ith largest component 

Theorem
Suppose d(n) æ D in distribution and expectation, and G(n) 

is

generated from the configuration model with degree sequence

d(n)
. For any ‘ > 0, we have

lim
næŒ

P 
A----

Nk(G(n))
n 

≠ flk 

---- > ‘
B 

= 0, ’ k

lim
næŒ

P 
A----

L1(G(n))
n 

≠ flŒ 

---- > ‘
B 

= 0

lim
næŒ

P
A 

L2(G(n))
n 

> ‘

B

= 0.
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The Law of Large Networks

For large graphs, network structure completely characterized by
the branching process
• Distribution of component sizes
• Size of giant component

Note: need DÕ non-singular

Proof is beyond our scope
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Survival Probability of T

Fun fact: if g(s) is the generating function for D, then gÕ

µ 
(s) is

the generating function for DÕ:
Œ

k=0
Œ

k=1
Œ

ÿ

k=0

ÿ

ÿ

d dÕ(s) =  g(s) =  P(D = k)s kg d ds s 

kP(D = k)s k≠1= 

(k + 1)P(D = k + 1)s k= 

If › solves µ› = g
Õ(›), survival probability of T is „ = 1 ≠ g(›)

• Giant component covers fraction „ of the network

Evan Sadler Difusion 17/34



Typical Distances

Define ‹ = E[DÕ], H(G) distance between two random nodes in
the largest component of G

Theorem
A giant component exists if and only if ‹ > 1. In this case, for

any ‘ > 0 we have

lim
næŒ

P 
A----

H(G) 
log‹ n 

≠ 1
---- > ‘

B 

= 0

Typical distance between nodes is log n‹ 

• Relates to growth rate of the branching process T
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A Difusion Process

People learn about a product through word-of-mouth
• i.i.d private values v distributed uniformly on [0, 1]
• Price p

If I learn about the product, buy if v > p

• If I buy, my friends hear about it, make their own choices

Suppose n individuals are linked in a configuration model, and
one random person starts out with the product
• How many people end up buying?
• How long does it take to spread?
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Outcome Variables

Let Xn(t) denote the (random) number of purchasers after t
periods in the n person network

Define extent of adoption

Xn(t)
– n = lim

tæŒ n 

For x œ (0, 1), diffusion times 
I

Xn(t) 
J 

· n(x) = min t : (Œ) Ø x
Xn

Will characterize – n and · n for large n
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Percolation in the Configuration Model

If I buy, each neighbor will buy with independent probability
1 ≠ p
• Adoption spreads through a subgraph
• As if we delete each person with independent probability p

The percolated graph is also a configuration model, degree
distribution Dp

• Realize degree according to D, delete each link with
probability p

• Binomial distribution with D trials and success probability
1 ≠ p

Generating function for Dp:

gp(s) = g (p + (1 ≠ p)s)
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The Extent of Difusion

Recall µ = E[D]

• „p is fraction of nodes in the component, ’ p is fraction of
nodes that link to this component
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There exist „p and ’ p such that – n converges in distribution to a 
random variable –, taking the value „p with probability ’ p and 
the value 0 otherwise. To obtain these constants, we can solve

µ› = g Õ (p + (1 ≠ p)›)

If ›ú 
is the solut

 
ion, we have „p = (1 ≠ p) (1 ≠ gp(›ú)) and

’ p = 1 ≠ gp(›ú).

Intuitively, question is whether the initial seed touches the giant 
component in the percolated graph



The Extent of Difusion

E[Dp] = (1 ≠ p)µ, gp
Õ (s) = (1 ≠ p)gÕ (p + (1 ≠ p)s)

• ›
ú is the extinction probability of a non-root node

• By the law of large networks, this is the probability that, going
forward, a node does not link to the giant component

Probability that I do not link to the giant component:
Œÿ

kP(Dp = k)(› ú) = gp(› ú)
k=1

Probability that I purchase: 1 ≠ p
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The Rate of Difusion

Theorem
Conditional on having a large cascade, for all x œ (0, 1) we have

· n(x) 
logp‹ n 

æ 1

in probability.

The time it takes to reach any positive fraction is roughly logp‹ n
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The Rate of Difusion
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Comparative Statics

How does adoption change with the price and the network?

Theorem
Suppose ‹ > 1. There exists a critical price pc œ (0, 1) such that

• „p = ’ p = 0  for p Ø pc

• „p > 0 for p < pc, and ˆ„p

ˆp < 0
Suppose D and D̂ are two distributions, with„p and „̂p the

corresponding giant component sizes, and ‹ and ‹̂ the

corresponding forward degrees. If D FOSD D̂, then „p Ø „̂p and

‹ Ø ‹̂. If D is a mean preserving spread of D̂, then ‹ Ø ‹̂ 
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Comparative Statics

For suffciently high prices, there is no adoption, impossible to
get viral cascade

Below the critical price, adoption is decreasing in price
• At pc, derivative makes a discontinuous jump

Making the network more dense leads to more adoption and 
faster diffusion
• Mean preserving spread makes diffusion faster, but may not 

lead to more adoption
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Example

Suppose D takes the value 3 for sure, D̂ takes values 1 or 5 with
equal probability

Under D, extinction probability solves

› = (p + (1  ≠ p)›)2 =∆ › = min 1,[

Y
]

¥ 1

A B2
Z
^p 

1 ≠ p \ 

For p close to zero, › is close to zero, „p

Under D̂, extinction probability solves

6› = 1 + 5 (p + (1  ≠ p)›)4

For p close to zero, › close to 0.17, „p ¥ 0.83
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A Pricing Problem

Suppose a monopolist is selling this product and wants to choose
p to maximize profits
• Constant marginal cost c < 1

Assume a fraction ‘ ¥ 0 of the population gets seeded at random
• For large networks, guaranteed to hit the giant component

Total demand is fraction Q(p) = „p = (1 ≠ p) (1 ≠ gp(›ú)) of the
population 

Choose p to maximize Q(p)(p ≠ c)
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A Pricing Problem

If all consumers were exposed to the product, then Q(p) = 1  ≠ p
• Maxmizie (1 ≠ p)(p ≠ c)

1+c• Set p = 2 , profit (1≠
4 
c)2

p ˆQ p• Price elasticity: = ≠Q(p) ˆp 1≠p

With word of mouth, Q(p) = (1  ≠ p) (1  ≠ gp(›ú)), strictly less
• Demand is also more elastic:

p ˆQ p 
A 

(1 ≠ p)(1 ≠ ›ú)gÕ (p + (1  ≠ p)›ú)
B 

= ≠ 1 +  
Q(p) ˆp 1 ≠ p 1 ≠ gp(›ú)

Implies lower optimal price
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Price Comparative Statics

Recall Poisson distribution:

eP(X = k) = ⁄
k

k!
≠⁄

Mean and variance ⁄

Theorem (Campbell, 2013)
Suppose the degree distribution is Poisson with parameter ⁄.

The optimal monopoly price is increasing in ⁄.

Dense network leads to higher prices
• Intuition: monopolist less reliant on any individual spreading

information
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Advertising

Suppose now our monopolist can invest in advertising in addition
to word-of-mouth

Can inform a fraction Ê of the population at cost –Ê for – > 0

New objective, maximize

Q(p, Ê)(p ≠ c) ≠ –Ê

Quantity depends now both on price and on advertising Ê
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Advertising

Word-of-mouth complements advertising
• Customers exposed through advertising will inform additional

people

Hard to jointly solve for optimal p and Ê, but...

Theorem
Suppose the degree distribution is Poisson with parameter ⁄.

Price and advertising are strategic complements.

All else equal, higher prices tend to go with more advertising
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Takeaways

Discrete network diffusion models help us think about viral 
cascades
• Component sizes in percolation network

Faster diffusion ”= more diffusion

Word-of-mouth leads to more elastic demand, tends to lower 
prices

Next time: models of network formation
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