
 
      

6.207/14.15: Networks 
Lecture 11: Giant Component, Generalized Random 

Graphs 
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Networks: Lecture 11 

Outline 

◦ Emergence and size of a giant component in Erdös-Renyi graphs

◦ An application: contagion and diffusion

◦ Generalized random graph models

◦ Graphs with prescribed degrees – configuration model

◦ Emergence of a giant component in the configuration model

Reading: 

◦ Newman, Sections 12.1-12.5, 12.7-12.8.

◦ Newman, Sections 13.2 (skip 13.2.2), 13.3,13.4.
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Networks: Lecture 11 

Giant Component 

◦ We have shown that when p(n)� log(n) , the Erdös-Renyi graph is n 
disconnected with high probability.

◦ In cases for which the network is not connected, the component
structure is of interest.

◦ We have argued that in this regime the expected number of isolated
nodes goes to infinity. This suggests that the Erdös-Renyi graph
should have an arbitrarily large number of components.

◦ We will next argue that the threshold p(n) = λ plays an importantn 
role in the component structure of the graph. 

− For λ < 1, all components of the graph are “small”.
− For λ > 1, the graph has a (unique) giant component, i.e., a

component that contains a constant fraction of the nodes.
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Emergence of the Giant Component—1 

◦ We will analyze the component structure in the vicinity of p(n) = λ using a n 
branching process approximation. 

◦ We assume p(n) = λ . n 

λ λ◦ B(n, ): binomial random variable with parameters n, . n n 

◦ Consider starting from node 1 and exploring the graph. 

λB(n − 1, λ ) B(n, )n n λB(n − 4, λ ) B(n, )n n 

1 1 

k = 0 k = 1 k = 2 k = 0 k = 1 k = 2 

(a) Erdos-Renyi graph process. (b) Branching Process Approx. 
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Emergence of the Giant Component—2 

◦ We first consider the case when λ < 1. 

◦ Let ZG
k and ZB

k denote the number of individuals at stage k for the graph 
process and the branching process approximation, respectively. 

◦ In view of the “overcounting” feature of the branching process, we have 

ZG
k ≤ ZB

k for all k. 

◦ From branching process analysis (see Lecture 3 notes), we have 

n 

B
k

λ(since the expected number of children is given by ×n 

] = λkE[Z , 

= λ). 

◦ Let S1 denote the number of nodes in the Erdös-Renyi graph connected to 
node 1, i.e., the size of the component which contains node 1. 

◦ Then, we have 
1 

λk =∑[ ] = SE 1 
k 

E[ZG
k ] ≤ ∑ E[ZB

k ] = ∑ . 
1 − λ

kk 
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Emergence of the Giant Component—3 

◦ The preceding result suggests that for λ < 1, the sizes of the components 
are “small”. 

Theorem 

Let p(n) = λ 
n and assume that λ < 1. For all (sufficiently large) a > 0, we have 

P 
� 

max 
1≤i≤n 

|Si | ≥ a log(n) 
� 
→ 0 as n → ∞. 

Here |Si | is the size of the component that contains node i . 

◦ This result states that for λ < 1, all components are small [in particular they 
are of size O(log(n))]. 

◦ Proof is beyond the scope of this course. 
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Emergence of the Giant Component—4 

◦ We next consider the case when λ > 1. 

◦ We claim that Z G ≈ Z B when λk ≤ O( 
√ 
n).k k 

◦ The expected number of conflicts at stage k + 1 satisfies 
λ2 

2E[number of conflicts at stage k + 1] ≈ np E[Zk 
2] = n E[Z 2 

2 k ]. n

Zk 

◦ We assume for large n that Zk is a Poisson random variable and therefore 
var(Zk ) = λk . This implies that 

E[Zk 
2] = var(Zk ) + E[Zk ]

2 = λk + λ2k ≈ λ2k . 

◦ Combining the preceding two relations, we see that the conflicts become 
non-negligible only after λk ≈ √ 

n. 
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Emergence of the Giant Component—5 

◦ Hence, there exists some c > 0 such that √ 
P(there exists a component with size ≥ c n nodes) → 1 as 
n → ∞. √ 

√ 

◦ Moreover, between any two components of size n, the probability of 
having a link is given by 

P(there exists at least one link) = 1 − (1 − 
λ 
)n ≈ 1 − e −λ , 

n 

i.e., it is a positive constant independent of n. 

◦ This argument can be used to see that components of size ≤ n 
connect to each other, forming a connected component of size qn for 
some q > 0, a giant component. 
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Size of the Giant Component 

◦ Form an Erdös-Renyi graph with n − 1 nodes with link formation probability 
p(n) = λ , λ > 1. n 

◦ Now add a last node, and connect this node to the rest of the graph with 
probability p(n). 

◦ Let q be the fraction of nodes in the giant component of the n − 1 node 
network. We can assume that for large n, q is also the fraction of nodes in 
the giant component of the n-node network. 

◦ The probability that node n is not in the giant component is given by 

P(node n not in the giant component) = 1 − q ≡ ρ. 

◦ The probability that node n is not in the giant component is equal to the 
probability that none of its neighbors is in the giant component, yielding 

n−1 
ρ = ∑ pk ρ

k ≡ Φ(ρ). 
k=0 

◦ Like before, this equation has a fixed point ρ ∗ ∈ (0, 1). 
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An Application: Contagion and Diffusion 

◦ Consider a society of n individuals. 

◦ A randomly chosen individual is infected with a contagious virus. 

◦ Assume that the network of interactions in the society is described by an 
Erdös-Renyi graph with link probability p. 

◦ Assume that any individual is immune with a probability π. 

◦ We would like to find the expected size of the epidemic as a fraction of the 
whole society. 

◦ The spread of disease can be modeled as: 

◦ Generate an Erdös-Renyi graph with n nodes and link probability p. 
◦ Delete πn of the nodes uniformly at random. 
◦ Identify the component that the initially infected individual lies in. 

◦ We can equivalently examine a graph with (1 − π)n nodes with link 
probability p. 
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An Application: Contagion and Diffusion 

◦ We consider 3 cases: 

◦ p(1 − π)n < 1: 

log((1 − π)n)
E[size of epidemic as a fraction of the society] ≤ ≈ 0. 

n 

◦ 1 < p(1 − π)n < log((1 − π)n): 

E[size of epidemic as a fraction of the society] 
qq(1 − π)n + (1 − q) log((1 − π)n)) 

= ≈ q 2(1 − π), 
n 

where q denotes the fraction of nodes in the giant component of the graph 
−q(1−π)npwith (1 − π)n nodes, i.e., q = 1 − e . 

log((1−π)n)◦ p > :
(1−π)n 

E[size of epidemic as a fraction of the society] = (1 − π). 
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Configuration Model—1 

◦ We have seen that the Erdös-Renyi model has a Poisson degree distribution, 
which falls off very fast. 

◦ Our next goal is to generate random networks with a “given degree 
distribution”. 

◦ One of the most widely method used for this purpose is the configuration 
model developed by Bender and Canfield in 1978. 

◦ The configuration model is specified in terms of a degree sequence, i.e., for 
a network of n nodes, we have a desired degree sequence (k1, . . . , kn), which 
specifies the degree ki of node i , for i = 1, . . . , n. 
− Given a degree distribution pk , we can generate the degree sequence 

for n nodes by sampling the degrees independently from the 
distribution pk , i.e., ki ∼ pk . 

− A law of large numbers argument establishes that the frequency of 
(n)

degrees pk converges to the degree distribution pk as n goes to 
infinity. 
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Configuration Model—2 

◦ Given the degree ki for node i for all i = 1, . . . , n, we create a random 
network with these degrees as follows: 

◦ We give each node i , ki “stubs” sticking out of it, which are ends of 
edges-to-be (there are a total of ∑i ki = 2m stubs, where m is the number 
of edges). 

◦ We choose two stubs uniformly at random and create an edge between the 
corresponding nodes. 

◦ We choose another pair from the remaining 2m − 2 stubs, connect those 
and continue until all the stubs are used up. 

◦ Remarks: 

− This process generates each possible matching of stubs with equal 
probability. 

− The sum of degrees needs to be even (or else an entry will be left out 
at the end). 

− It is possible to have self-edges and multiedges. 
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Distribution of the Degree of a Neighboring Node—1 

◦ We will use a branching process approximation to study the giant 
component in the configuration model. 

◦ For this we need to understand the distribution of the degree of a 
neighboring node, i.e., given some node i with degree di , consider a 
neighbor j . What is the degree distribution of node j? 

1

k1 ∼ pk
j

k2 ∼ p̃k

# of children = k2 − 1

◦ Naive intuition: Same distribution as node i . 

◦ Example: Consider a graph with 4 nodes and links {1,2}, {2,3}, {3,4}. 
− We have p1 = p2 = 1/2. Pick a link at random, then randomly pick 

an end of it, there is a 2/3 chance of finding a node with degree 2 and 
1/3 chance of finding a node with degree 1. 

− Higher degree nodes are involved in a higher percentage of the links. 
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Distribution of the Degree of a Neighboring Node—2 

◦ The degree of a node we reach by following a randomly chosen edge is not 
given by pk . 

◦ In the configuration model, an edge emerging from a node has equal chance 
of terminating at any of the stubs. 

◦ Since there are 2m stubs in total, the probability of this edge ending at any 
particular node of degree k is k/2m. 

◦ Since the total number of nodes with degree k is given by npk , the 
probability of the edge attaching to a node with degree k is given by 

k kpk npk = ,
2m hki 

where hki is the expected degree in the network and the equality follows 
from the relation 2m = nhki. 
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Distribution of the Degree of a Neighboring Node—3 

◦ Intuitively, there are k edges that arrive at a node of degree k, we are k 
times as likely to arrive at that node than another node that has degree 1. 

◦ Thus, the degree distribution of the neighboring node p̃k is proportional to 
kpk , kpk kpk p̃k = = . 

∑j jpj hki 

1

k1 ∼ pk

j

∼ p̃k

∼ p̃k

16 



Networks: Lecture 11 

Emergence of a Giant Component in the Configuration 
Model—1 

◦ We will use a branching process approximation to analyze the emergence of 
the giant component. 

− We ignore self loops (can be shown to have small probability) and 
conflicts (do not matter until the graph grows to a substantial size). 

◦ Note that we have 

µ = Ẽ[number of children] = Ẽ[k − 1] 

∑ kp̃k − 1=
k 

k2pk − 1 hki∑ 
k 

=

hk2i 
= − 1. hki 
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Emergence of a Giant Component in the Configuration 
Model—2 

◦ Using the branching process analysis, this yields the following threshold for 
the emergence of the giant component: 

Subcritical: µ < 1, or equivalently 

hk2i 
< 2 ⇔ hk(k − 2)i < 0. hki 

Supercritical: µ > 1, or equivalently 

hk(k − 2)i > 0. 

◦ In the case of an Erdös-Renyi graph, we have hk2i = hki + hki2, and so the 
giant component emerges when 

hki2 > hki ⇔ hki > 1. 

◦ Since hki = (n − 1)p in the Erdös-Renyi graph, this indeed yields the 
threshold function t(n) = 1 for the emergence of the giant component. n 
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