6.207/14.15: Networks

Lecture 10: Erdös-Renyi Graphs and Phase Transitions

Outline

- Phase transitions
- Connectivity threshold
- Diameter of Erdös-Renyi graphs
- Branching processes

Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is specified by the link formation probability $p(n)$.
- For a given property A (e.g. connectivity), we define a threshold function $t(n)$ as a function that satisfies:

$$
\begin{array}{cl}
\mathbb{P}(\text { property } A) \rightarrow 0 & \text { if } \quad \frac{p(n)}{t(n)} \rightarrow 0, \text { and } \\
\mathbb{P}(\text { property } A) \rightarrow 1 & \text { if } \quad \frac{p(n)}{t(n)} \rightarrow \infty
\end{array}
$$

- This definition makes sense for "monotone or increasing properties," i.e., properties such that if a given network satisfies it, any supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectedness of the Erdös and Renyi model is $t(n)=\frac{\log (n)}{n}$.

- To prove this, it is sufficient to show that when $p(n)=\lambda(n) \frac{\log (n)}{n}$ with $\lambda(n) \rightarrow 0$, we have \mathbb{P} (connected) $\rightarrow 0$ (and the converse).
- However, we will show a stronger result: Let $p(n)=\lambda \frac{\log (n)}{n}$.

$$
\begin{align*}
& \text { If } \lambda<1, \quad \mathbb{P}(\text { connected }) \rightarrow 0, \tag{1}\\
& \text { If } \lambda>1, \tag{2}\\
& \mathbb{P}(\text { connected }) \rightarrow 1 .
\end{align*}
$$

Proof:

- We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1 .

Proof (Continued)

- Let l_{i} be a Bernoulli random variable defined as

$$
I_{i}=\left\{\begin{array}{cc}
1 & \text { if node } i \text { is isolated } \\
0 & \text { otherwise }
\end{array}\right.
$$

- We can write the probability that an individual node is isolated as

$$
\begin{equation*}
q=\mathbb{P}\left(I_{i}=1\right)=(1-p)^{n-1} \approx e^{-p n}=e^{-\lambda \log (n)}=n^{-\lambda} \tag{3}
\end{equation*}
$$

where we use $\lim _{n \rightarrow \infty}\left(1-\frac{a}{n}\right)^{n}=e^{-a}$ to get the approximation.

- Let $X=\sum_{i=1}^{n} l_{i}$ denote the total number of isolated nodes. Then, we have

$$
\begin{equation*}
\mathbb{E}[X]=n \cdot n^{-\lambda} \tag{4}
\end{equation*}
$$

- For $\lambda<1$, we have $\mathbb{E}[X] \rightarrow \infty$. We want to show that this implies $\mathbb{P}(X=0) \rightarrow 0$.
- In general, this is not true. But, here it holds.
- We show that the variance of X is of the same order as its mean.

Proof (Continued)

- We compute the variance of $X, \operatorname{var}(X)$:

$$
\begin{aligned}
\operatorname{var}(X) & =\sum_{i} \operatorname{var}\left(I_{i}\right)+\sum_{i} \sum_{j \neq i} \operatorname{cov}\left(I_{i}, I_{j}\right)=n \operatorname{var}\left(I_{1}\right)+n(n-1) \operatorname{cov}\left(I_{1}, I_{2}\right) \\
& =n q(1-q)+n(n-1)\left(\mathbb{E}\left[I_{1} I_{2}\right]-\mathbb{E}\left[I_{1}\right] \mathbb{E}\left[I_{2}\right]\right)
\end{aligned}
$$

where the second and third equalities follow since the I_{i} are identically distributed Bernoulli random variables with parameter q (dependent).

- We have

$$
\begin{aligned}
\mathbb{E}\left[I_{1} I_{2}\right] & =\mathbb{P}\left(I_{1}=1, I_{2}=1\right)=\mathbb{P}(\text { both } 1 \text { and } 2 \text { are isolated }) \\
& =(1-p)^{2 n-3}=\frac{q^{2}}{(1-p)} .
\end{aligned}
$$

- Combining the preceding two relations, we obtain

$$
\begin{aligned}
\operatorname{var}(X) & =n q(1-q)+n(n-1)\left[\frac{q^{2}}{(1-p)}-q^{2}\right] \\
& =n q(1-q)+n(n-1) \frac{q^{2} p}{1-p} .
\end{aligned}
$$

Proof (Continued)

- For large n, we have $q \rightarrow 0$ [cf. Eq. (3)], or $1-q \rightarrow 1$. Also $p \rightarrow 0$. Hence,

$$
\begin{aligned}
\operatorname{var}(X) & \sim n q+n^{2} q^{2} \frac{p}{1-p} \sim n q+n^{2} q^{2} p \\
& =n n^{-\lambda}+\lambda n \log (n) n^{-2 \lambda} \\
& \sim n n^{-\lambda}=\mathbb{E}[X]
\end{aligned}
$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \rightarrow 1$ as $n \rightarrow \infty$.

- This implies that

$$
\mathbb{E}[X] \sim \operatorname{var}(X) \geq(0-\mathbb{E}[X])^{2} \mathbb{P}(X=0)
$$

and therefore,

$$
\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^{2}}=\frac{1}{\mathbb{E}[X]} \rightarrow 0
$$

- It follows that \mathbb{P} (at least one isolated node) $\rightarrow 1$ and therefore, \mathbb{P} (disconnected) $\rightarrow 1$ as $n \rightarrow \infty$, completing the proof.

Converse

- We next show claim (2), i.e., if $p(n)=\lambda \frac{\log (n)}{n}$ with $\lambda>1$, then $\mathbb{P}($ connected $) \rightarrow 1$, or equivalently $\mathbb{P}($ disconnected $) \rightarrow 0$.
- From Eq. (4), we have $\mathbb{E}[X]=n \cdot n^{-\lambda} \rightarrow 0$ for $\lambda>1$.
- This implies probability of having isolated nodes goes to 0 . However, we need more to establish connectivity.
- The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some $k \leq n / 2$.
- We have

$$
\mathbb{P}(\{1, \ldots, k\} \text { not connected to the rest })=(1-p)^{k(n-k)}
$$

and therefore,

$$
\mathbb{P}(\exists \mathrm{k} \text { nodes not connected to the rest })=\binom{n}{k}(1-p)^{k(n-k)}
$$

Converse (Continued)

- Using the union bound [i.e. $\mathbb{P}\left(\cup_{i} A_{i}\right) \leq \sum_{i} \mathbb{P}\left(A_{i}\right)$], we obtain

$$
\mathbb{P}(\text { disconnected graph }) \leq \sum_{k=1}^{n / 2}\binom{n}{k}(1-p)^{k(n-k)} .
$$

- Using Stirling's formula $k!\sim\left(\frac{k}{e}\right)^{k}$

$$
\binom{n}{k} \approx \exp (n \log n-k \log k-(n-k) \log (n-k))=\exp (n H(k / n)),
$$

where $H(x)=-x \log x-(1-x) \log (1-x)$ is the entropy function

- For $p=\lambda \log n / n$, using $(1-p) \approx \exp (-p)$

$$
(1-p)^{k(n-k)} \approx \exp \left(-n \log n \lambda \frac{k}{n}\left(1-\frac{k}{n}\right)\right)
$$

Converse (Continued)

- Using these approximations, we obtain

$$
\begin{aligned}
\mathbb{P}(\text { disconnected graph }) & \leq \sum_{k=1}^{n / 2} \exp \left(n H\left(\frac{k}{n}\right)-n \log n \lambda \frac{k}{n}\left(1-\frac{k}{n}\right)\right) \\
& \left.\approx \int_{1 / n}^{n / 2} \exp \left(n f_{n}(r)\right)\right)
\end{aligned}
$$

where $f_{n}(r)=H(r)-\log n \lambda r(1-r)$.

- Invoking Laplace's principle, we approximate

$$
\left.\int_{1 / n}^{n / 2} \exp \left(n f_{n}(r)\right)\right) \approx C \exp \left(\max _{\frac{1}{n} \leq r \leq \frac{n}{2}} f_{n}(r)\right) .
$$

for some constant C, independent of n

Converse (Continued)

- It can be checked that maximum over $[1 / n, n / 2]$ is achieved at $r=1 / n$.

$$
f_{n}(1 / n) \approx-(\lambda-1) \frac{\log n}{n}
$$

- Therefore, we obtain

$$
\begin{aligned}
\mathbb{P}(\text { disconnected graph }) & \leq C \exp (-(\lambda-1) \log n) \\
& =C n^{-1+\lambda} \\
& \xrightarrow[\rightarrow]{ } 0 .
\end{aligned}
$$

Phase Transitions - Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with $p=0.10$.

Diameter

- Recall the diameter of a graph: let $d_{i j}$ be the distance between nodes i and j (i.e., length of the shortest path between i and j).

$$
\text { diameter }=\max _{i, j} d_{i j} \text {. }
$$

- We will show that the diameter of the ER graph varies as $\ln n$.
- Heuristic Argument:
- Let c denote the average degree of a node, $c=(n-1) p$.
- The average number of nodes s steps away from a randomly chosen node is c^{s}.
- The number of nodes reached is equal to the total number of nodes when $c^{s} \approx n$, or $s \approx \frac{\ln n}{\ln c}$
- Every node is within s steps of the starting point, implying that the diameter is approximately $\frac{\ln n}{\ln c}$.
- This argument works when s is small (breaks down when c^{s} become comparable with n since number of nodes within distance s cannot exceed number of nodes in the whole graph).

Diameter

- Consider two different starting nodes i and j. The average number of nodes s and t steps away from them will be equal to c^{s} and c^{t} (assume both remain smaller than order n).
- We have $d_{i j}>s+t+1$ if and only if there is no edge between the surfaces. Since there are on average $c^{s} \times c^{t}$ pairs of nodes between surfaces, this implies $P\left(d_{i j}>s+t+1\right)=(1-p)^{c^{s+t}}$. Denoting $I=s+t+1$, we have

$$
P\left(d_{i j}>I\right)=(1-p)^{c^{l-1}} \approx\left(1-\frac{c}{n}\right)^{c^{\prime-1}}
$$

Diameter

- Taking logs of both sides, we find

$$
\ln P\left(d_{i j}>I\right)=c^{I-1} \ln \left(1-\frac{c}{n}\right) \approx-\frac{c^{\prime}}{n}
$$

where we used $\ln (1+x) \approx x$ (which holds for large n). Therefore,

$$
P\left(d_{i j}>I\right)=\exp \left(-\frac{c^{\prime}}{n}\right)
$$

- The diameter is the smallest / such that $P\left(d_{i j}>/\right)$ is zero. The preceding will tend to zero only if c^{\prime} grows faster than n, i.e., $c^{\prime}=a n^{1+\epsilon}$ for some constant a and $\epsilon \rightarrow 0$ (note that this can be achieved while keeping both c^{s} and c^{t} smaller than n).
- Rearranging for I, we obtain the diameter as

$$
I=\frac{\ln a}{\ln c}+\lim _{\epsilon \rightarrow 0} \frac{(1+\epsilon) \ln n}{\ln c}=A+\frac{\ln n}{\ln c}
$$

- Example: Let $n=7 \times 10^{9}$ and $c=1000$. Then, $I=\frac{\ln n}{\ln c}=3.3$.

Branching Processes

- Brief history of branching processes
- Genesis in work by Thomas Malthus (1798)
- An Essay on the Principle of Population
- Led to Malthusianism: one of the key premises
- Unchecked population grows exponentially; resources (e.g. food) don't which is justified through the study of branching processes
- John Keynes, Economic consequences of the Peace (1919)
- Argues that European political economy of that time is unstable
- Due to premise of Malthusianism
- Study of extinction or growth of species in Ecology
- Branching processes play crucial role
- The Galton-Watson (1875) was one of the first such approach
- General branching process theory
- T. E. Harris, The Theory of Branching Processes (1963)
- K. B. Athreya and P. E. Ney, Branching Processes (1972)

Branching Processes

- We'll use branching process
- To analyze the emergence of giant component in ER graph
- The Galton-Watson Branching process is defined as follows:
- Start with a single individual at generation $0, Z_{0}=1$.
- Let Z_{k} denote the number of individuals in generation k.
- Let ξ be a nonnegative discrete random variable with distribution p_{k}, i.e.,

$$
P(\xi=k)=p_{k}, \quad \mathbb{E}[\xi]=\mu, \quad \operatorname{var}(\xi) \neq 0
$$

- Each individual has a random number of children in the next generation, which are independent copies of the random variable ξ. That is,

$$
\begin{aligned}
Z_{1} & =\xi, \quad Z_{2}=\sum_{i=1}^{Z_{1}} \xi^{(i)} \text { (sum of random number of rvs). } \\
\mathbb{E}\left[Z_{1}\right] & =\mu, \quad \mathbb{E}\left[Z_{2}\right]=\mathbb{E}\left[\mathbb{E}\left[Z_{2} \mid Z_{1}\right]\right]=\mathbb{E}\left[\mu Z_{1}\right]=\mu^{2}, \\
\mathbb{E}\left[Z_{n}\right] & =\mu^{n} .
\end{aligned}
$$

Branching Processes (Continued)

- Let Z denote the total number of individuals in all generations, $Z=\sum_{n=1}^{\infty} Z_{n}$.
- We consider the events $Z<\infty$ (extinction) and $Z=\infty$ (survive forever).
- Our interest: when and with what probability do these events occur.
- Two cases:
- Subcritical $(\mu<1)$ and supercritical $(\mu>1)$
- Subcritical: $\mu<1$
- Since $\mathbb{E}\left[Z_{n}\right]=\mu^{n}$, we have

$$
\mathbb{E}[Z]=\mathbb{E}\left[\sum_{n=1}^{\infty} Z_{n}\right]=\sum_{n=1}^{\infty} \mathbb{E}\left[Z_{n}\right]=\frac{1}{1-\mu}<\infty
$$

(some care is needed in the second equality).

- This implies that $Z<\infty$ with probability 1 and $\mathbb{P}($ extinction $)=1$.

Branching Processes (Continued)

- Supercritical: $\mu>1$
- Recall $p_{0}=\mathbb{P}(\xi=0)$. If $p_{0}=0$, then $\mathbb{P}($ extinction $)=0$.
- Let $p_{0}>0$. We have $\rho=\mathbb{P}($ extinction $) \geq \mathbb{P}\left(Z_{1}=0\right)=p_{0}>0$.
- We can write the following fixed-point equation for ρ :

$$
\rho=\sum_{k=0}^{\infty} p_{k} \rho^{k}=\mathbb{E}\left[\rho^{\xi}\right] \equiv \Phi(\rho)
$$

- We have $\Phi(0)=p_{0}$ (using convention $0^{0}=1$) and $\Phi(1)=1$
- Φ is a convex function ($\Phi^{\prime \prime}(\rho) \geq 0$ for all $\rho \in[0,1]$), and $\Phi^{\prime}(1)=\mu>1$.

Figure: The generating function Φ has a unique fixed point $\rho^{*} \in[0,1)$.

MIT OpenCourseWare
https://ocw.mit.edu

14.15J/6.207J Networks

Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

