6.207/14.15: Networks Lecture 10: Erdös-Renyi Graphs and Phase Transitions

Outline

- Phase transitions
- Connectivity threshold
- Diameter of Erdös-Renyi graphs
- Branching processes

Phase Transitions for Erdös-Renyi Model

- Erdös-Renyi model is specified by the link formation probability p(n).
- For a given property A (e.g. connectivity), we define a threshold function t(n) as a function that satisfies:

$$\operatorname{P}(\operatorname{property} A) o 0$$
 if $rac{p(n)}{t(n)} o 0$, and $\mathbb{P}(\operatorname{property} A) o 1$ if $rac{p(n)}{t(n)} o \infty$.

- This definition makes sense for "monotone or increasing properties,"
 i.e., properties such that if a given network satisfies it, any
 supernetwork (in the sense of set inclusion) satisfies it.
- When such a threshold function exists, we say that a phase transition occurs at that threshold.
- Exhibiting such phase transitions was one of the main contributions of the seminal work of Erdös and Renyi 1959.

Threshold Function for Connectivity

Theorem

(Erdös and Renyi 1961) A threshold function for the connectedness of the Erdös and Renyi model is $t(n) = \frac{\log(n)}{n}$.

• To prove this, it is sufficient to show that when $p(n) = \lambda(n) \frac{\log(n)}{n}$ with $\lambda(n) \to 0$, we have $\mathbb{P}(\text{connected}) \to 0$ (and the converse).

• However, we will show a stronger result: Let $p(n) = \lambda \frac{\log(n)}{n}$.

If
$$\lambda < 1$$
, $\mathbb{P}(\text{connected}) \to 0$, (1)

If
$$\lambda > 1$$
, $\mathbb{P}(\text{connected}) \to 1$. (2)

Proof:

• We first prove claim (1). To show disconnectedness, it is sufficient to show that the probability that there exists at least one isolated node goes to 1.

Proof (Continued)

• Let I_i be a Bernoulli random variable defined as

$$I_i = \begin{cases} 1 & \text{if node } i \text{ is isolated,} \\ 0 & \text{otherwise.} \end{cases}$$

 $\circ~$ We can write the probability that an individual node is isolated as

$$q = \mathbb{P}(I_i = 1) = (1 - p)^{n-1} \approx e^{-pn} = e^{-\lambda \log(n)} = n^{-\lambda},$$
 (3)

where we use $\lim_{n\to\infty} \left(1-\frac{a}{n}\right)^n = e^{-a}$ to get the approximation.

• Let $X = \sum_{i=1}^{n} I_i$ denote the total number of isolated nodes. Then, we have

$$\mathbb{E}[X] = n \cdot n^{-\lambda}.$$
 (4)

- For $\lambda < 1$, we have $\mathbb{E}[X] \to \infty$. We want to show that this implies $\mathbb{P}(X = 0) \to 0$.
 - In general, this is not true. But, here it holds.
 - We show that the variance of X is of the same order as its mean.

Proof (Continued)

• We compute the variance of X, var(X):

$$\operatorname{var}(X) = \sum_{i} \operatorname{var}(I_{i}) + \sum_{i} \sum_{j \neq i} \operatorname{cov}(I_{i}, I_{j}) = n \operatorname{var}(I_{1}) + n(n-1) \operatorname{cov}(I_{1}, I_{2})$$
$$= nq(1-q) + n(n-1) \left(\mathbb{E}[I_{1}I_{2}] - \mathbb{E}[I_{1}]\mathbb{E}[I_{2}] \right),$$

where the second and third equalities follow since the *I_i* are identically distributed Bernoulli random variables with parameter *q* (dependent).
We have

$$\mathbb{E}[I_1 I_2] = \mathbb{P}(I_1 = 1, I_2 = 1) = \mathbb{P}(\text{both 1 and 2 are isolated})$$
$$= (1-p)^{2n-3} = \frac{q^2}{(1-p)}.$$

• Combining the preceding two relations, we obtain $var(X) = nq(1-q) + n(n-1) \left[\frac{q^2}{(1-p)} - q^2 \right]$ $= nq(1-q) + n(n-1) \frac{q^2p}{1-p}.$

Proof (Continued)

• For large *n*, we have $q \rightarrow 0$ [cf. Eq. (3)], or $1 - q \rightarrow 1$. Also $p \rightarrow 0$. Hence,

$$\operatorname{var}(X) \sim nq + n^2 q^2 \frac{p}{1-p} \sim nq + n^2 q^2 p$$
$$= nn^{-\lambda} + \lambda n \log(n) n^{-2\lambda}$$
$$\sim nn^{-\lambda} = \mathbb{E}[X],$$

where $a(n) \sim b(n)$ denotes $\frac{a(n)}{b(n)} \rightarrow 1$ as $n \rightarrow \infty$.

• This implies that

$$\mathbb{E}[X] \sim \operatorname{var}(X) \ge (0 - \mathbb{E}[X])^2 \mathbb{P}(X = 0),$$

and therefore,

$$\mathbb{P}(X=0) \leq \frac{\mathbb{E}[X]}{\mathbb{E}[X]^2} = \frac{1}{\mathbb{E}[X]} \to 0.$$

• It follows that $\mathbb{P}(\text{at least one isolated node}) \to 1$ and therefore, $\mathbb{P}(\text{disconnected}) \to 1$ as $n \to \infty$, completing the proof.

Converse

- We next show claim (2), i.e., if $p(n) = \lambda \frac{\log(n)}{n}$ with $\lambda > 1$, then $\mathbb{P}(\text{connected}) \to 1$, or equivalently $\mathbb{P}(\text{disconnected}) \to 0$.
- From Eq. (4), we have $\mathbb{E}[X] = n \cdot n^{-\lambda} \to 0$ for $\lambda > 1$.
- This implies probability of having isolated nodes goes to 0. However, we need more to establish connectivity.
- The event "graph is disconnected" is equivalent to the existence of k nodes without an edge to the remaining nodes, for some $k \le n/2$.
- We have

 $\mathbb{P}(\{1,\ldots,k\} \text{ not connected to the rest}) = (1-p)^{k(n-k)}$,

and therefore,

$$\mathbb{P}(\exists k \text{ nodes not connected to the rest}) = \binom{n}{k} (1-p)^{k(n-k)}.$$

Converse (Continued)

• Using the union bound [i.e. $\mathbb{P}(\cup_i A_i) \leq \sum_i \mathbb{P}(A_i)$], we obtain

$$\mathbb{P}(\text{disconnected graph}) \leq \sum_{k=1}^{n/2} \binom{n}{k} (1-p)^{k(n-k)}.$$

• Using Stirling's formula
$$k! \sim \left(rac{k}{e}
ight)^k$$

$$\binom{n}{k} \approx \exp\left(n\log n - k\log k - (n-k)\log(n-k)\right) = \exp\left(nH(k/n)\right),$$

where $H(x) = -x \log x - (1 - x) \log(1 - x)$ is the entropy function • For $p = \lambda \log n / n$, using $(1 - p) \approx \exp(-p)$

$$(1-p)^{k(n-k)} \approx \exp\left(-n\log n \lambda \frac{k}{n}\left(1-\frac{k}{n}\right)\right)$$

Converse (Continued)

• Using these approximations, we obtain

$$\mathbb{P}(\text{disconnected graph}) \leq \sum_{k=1}^{n/2} \exp\left(nH\left(\frac{k}{n}\right) - n\log n \lambda \frac{k}{n}\left(1 - \frac{k}{n}\right)\right)$$
$$\approx \int_{1/n}^{n/2} \exp\left(nf_n(r)\right)$$

where
$$f_n(r) = H(r) - \log n\lambda r(1-r)$$
.

• Invoking Laplace's principle, we approximate

$$\int_{1/n}^{n/2} \exp\left(nf_n(r)\right) \right) \approx C \exp\left(\max_{\frac{1}{n} \leq r \leq \frac{n}{2}} f_n(r)\right).$$

for some constant C, independent of n

Converse (Continued)

• It can be checked that maximum over [1/n, n/2] is achieved at r = 1/n.

$$f_n(1/n) \approx -(\lambda - 1) \frac{\log n}{n}.$$

• Therefore, we obtain

$$\mathbb{P}(\text{disconnected graph}) \leq C \exp\left(-(\lambda - 1)\log n\right)$$
$$= Cn^{-1+\lambda}$$
$$\stackrel{\lambda > 1}{\rightarrow} 0.$$

Phase Transitions — Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with p = 0.10.

Diameter

• Recall the diameter of a graph: let d_{ij} be the distance between nodes *i* and *j* (i.e., length of the shortest path between *i* and *j*).

diameter =
$$\max_{i,j} d_{ij}$$
.

- We will show that the diameter of the ER graph varies as $\ln n$.
- Heuristic Argument:
 - Let c denote the average degree of a node, c = (n-1)p.
 - The average number of nodes s steps away from a randomly chosen node is c^s .
 - The number of nodes reached is equal to the total number of nodes when $c^s \approx n$, or $s \approx \frac{\ln n}{\ln c}$
 - Every node is within s steps of the starting point, implying that the diameter is approximately $\frac{\ln n}{\ln c}$.
 - This argument works when s is small (breaks down when c^s become comparable with n since number of nodes within distance s cannot exceed number of nodes in the whole graph).

Diameter

- Consider two different starting nodes *i* and *j*. The average number of nodes *s* and *t* steps away from them will be equal to *c^s* and *c^t* (assume both remain smaller than order *n*).
- We have $d_{ij} > s + t + 1$ if and only if there is no edge between the surfaces. Since there are on average $c^s \times c^t$ pairs of nodes between surfaces, this implies $P(d_{ij} > s + t + 1) = (1 - p)^{c^{s+t}}$. Denoting l = s + t + 1, we have $P(d_{ij} > l) = (1 - p)^{c^{l-1}} \approx \left(1 - \frac{c}{n}\right)^{c^{l-1}}$.

Diameter

• Taking logs of both sides, we find

$$\ln P(d_{ij} > I) = c^{I-1} \ln \left(1 - \frac{c}{n}\right) \approx -\frac{c^{I}}{n},$$

where we used $ln(1+x) \approx x$ (which holds for large *n*). Therefore,

$$P(d_{ij} > I) = exp\left(-\frac{c'}{n}\right)$$

- The diameter is the smallest I such that $P(d_{ij} > I)$ is zero. The preceding will tend to zero only if c^{I} grows faster than n, i.e., $c^{I} = an^{1+\epsilon}$ for some constant a and $\epsilon \to 0$ (note that this can be achieved while keeping both c^{s} and c^{t} smaller than n).
- \circ Rearranging for *I*, we obtain the diameter as

$$I = \frac{\ln a}{\ln c} + \lim_{\epsilon \to 0} \frac{(1+\epsilon) \ln n}{\ln c} = A + \frac{\ln n}{\ln c},$$

• Example: Let $n = 7 \times 10^9$ and c = 1000. Then, $l = \frac{\ln n}{\ln c} = 3.3$.

Branching Processes

- Brief history of branching processes
 - Genesis in work by Thomas Malthus (1798)
 - An Essay on the Principle of Population
 - Led to *Malthusianism*: one of the key premises
 - Unchecked population grows exponentially; resources (e.g. food) don't which is justified through the study of branching processes
- John Keynes, *Economic consequences of the Peace* (1919)
 - Argues that European political economy of that time is unstable
 - Due to premise of Malthusianism
- Study of extinction or growth of species in Ecology
 - Branching processes play crucial role
 - The Galton-Watson (1875) was one of the first such approach
- General branching process theory
 - T. E. Harris, *The Theory of Branching Processes* (1963)
 - K. B. Athreya and P. E. Ney, *Branching Processes* (1972)

Branching Processes

- We'll use branching process
 - To analyze the *emergence of giant component* in ER graph
- The Galton-Watson Branching process is defined as follows:
- Start with a single individual at generation 0, $Z_0 = 1$.
- Let Z_k denote the number of individuals in generation k.
- Let ξ be a nonnegative discrete random variable with distribution p_k , i.e.,

$$P(\xi = k) = p_k$$
, $\mathbb{E}[\xi] = \mu$, $var(\xi) \neq 0$.

• Each individual has a random number of children in the next generation, which are independent copies of the random variable ξ . That is,

$$Z_1 = \xi, \qquad Z_2 = \sum_{i=1}^{Z_1} \xi^{(i)} (\text{sum of random number of rvs}).$$
$$\mathbb{E}[Z_1] = \mu, \quad \mathbb{E}[Z_2] = \mathbb{E}[\mathbb{E}[Z_2 \mid Z_1]] = \mathbb{E}[\mu Z_1] = \mu^2,$$
$$\mathbb{E}[Z_n] = \mu^n.$$

Branching Processes (Continued)

- Let Z denote the total number of individuals in all generations, $Z = \sum_{n=1}^{\infty} Z_n$.
- We consider the events $Z < \infty$ (extinction) and $Z = \infty$ (survive forever).
- Our interest: when and with what probability do these events occur.
- Two cases:
 - Subcritical ($\mu < 1)$ and supercritical ($\mu > 1)$
- Subcritical: $\mu < 1$
- Since $\mathbb{E}[Z_n] = \mu^n$, we have

$$\mathbb{E}[Z] = \mathbb{E}\Big[\sum_{n=1}^{\infty} Z_n\Big] = \sum_{n=1}^{\infty} \mathbb{E}\Big[Z_n\Big] = \frac{1}{1-\mu} < \infty,$$

(some care is needed in the second equality).

• This implies that $Z < \infty$ with probability 1 and $\mathbb{P}(extinction) = 1$.

Branching Processes (Continued)

- \circ Supercritical: $\mu > 1$
- Recall $p_0 = \mathbb{P}(\xi = 0)$. If $p_0 = 0$, then $\mathbb{P}(extinction) = 0$.
- Let $p_0 > 0$. We have $\rho = \mathbb{P}(extinction) \ge \mathbb{P}(Z_1 = 0) = p_0 > 0$.
- $\circ~$ We can write the following fixed-point equation for ρ :

$$\rho = \sum_{k=0}^{\infty} p_k \rho^k = \mathbb{E}[\rho^{\xi}] \equiv \Phi(\rho).$$

- $\circ~$ We have $\Phi(0)=\textit{p}_0$ (using convention $0^0=1)$ and $\Phi(1)=1$
- $\circ \ \Phi \text{ is a convex function } (\Phi''(\rho) \geq 0 \text{ for all } \rho \in [0,1]) \text{, and } \Phi'(1) = \mu > 1.$

Figure: The generating function Φ has a unique fixed point $\rho^* \in [0, 1)$.

MIT OpenCourseWare https://ocw.mit.edu

14.15J/6.207J Networks Spring 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.