
 
      

6.207/14.15: Networks 
Lecture 10: Erdös-Renyi Graphs and Phase Transitions 
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Networks: Lecture 10 

Outline 

◦ Phase transitions 

◦ Connectivity threshold 

◦ Diameter of Erdös-Renyi graphs 

◦ Branching processes 
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Phase Transitions for Erdös-Renyi Model 

◦ Erdös-Renyi model is specified by the link formation probability p(n). 

◦ For a given property A (e.g. connectivity), we define a threshold function 
t(n) as a function that satisfies: 

p(n)
P(property A) → 0 if → 0, and 

t(n) 

p(n)
P(property A) → 1 if → ∞. 

t(n) 

− This definition makes sense for “monotone or increasing properties,” 
i.e., properties such that if a given network satisfies it, any 
supernetwork (in the sense of set inclusion) satisfies it. 

◦ When such a threshold function exists, we say that a phase transition occurs 
at that threshold. 

◦ Exhibiting such phase transitions was one of the main contributions of the 
seminal work of Erdös and Renyi 1959. 
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Threshold Function for Connectivity 

Theorem 

(Erdös and Renyi 1961) A threshold function for the connectedness of the Erdös 

and Renyi model is t(n) = log(n) n . 

log(n)◦ To prove this, it is sufficient to show that when p(n) = λ(n) with n 
λ(n) → 0, we have P(connected) → 0 (and the converse). 

◦ However, we will show a stronger result: Let p(n) = λ log(n) . n 

If λ < 1, P(connected) → 0, (1) 

If λ > 1, P(connected) → 1. (2) 

Proof: 

◦ We first prove claim (1). To show disconnectedness, it is sufficient to show 
that the probability that there exists at least one isolated node goes to 1. 
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Proof (Continued) 

◦ Let Ii be a Bernoulli random variable defined as � 
1 if node i is isolated,

Ii = 
0 otherwise. 

◦ We can write the probability that an individual node is isolated as 

−pn −λ log(n) −λ q = P(Ii = 1) = (1 − p)n−1 ≈ e = e = n , (3) � �n 
where we use limn→∞ 1 − a = e−a to get the approximation. n 

◦ Let X = ∑n 
=1 Ii denote the total number of isolated nodes. Then, we havei 

−λE[X ] = n · n . (4) 

◦ For λ < 1, we have E[X ] → ∞. We want to show that this implies 
P(X = 0) → 0. 

◦ In general, this is not true. But, here it holds. 
◦ We show that the variance of X is of the same order as its mean. 
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Proof (Continued) 

◦ We compute the variance of X , var(X ): 

var(X ) = ∑ var(Ii ) + ∑∑ cov(Ii , Ij ) = nvar(I1) + n(n − 1)cov(I1, I2) 
i i j 6=i � � 

= nq(1 − q) + n(n − 1) E[I1I2] − E[I1]E[I2] , 

where the second and third equalities follow since the Ii are identically 
distributed Bernoulli random variables with parameter q (dependent). 

◦ We have 

E[I1I2] = P(I1 = 1, I2 = 1) = P(both 1 and 2 are isolated) 
2 

(1 − p)2n−3 q 
= = . 

(1 − p) 

◦ Combining the preceding two relations, we obtainh 2 i q 
var(X ) = nq(1 − q) + n(n − 1) − q 2 

(1 − p) 
2q p 

= nq(1 − q) + n(n − 1) . 
1 − p 
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Proof (Continued) 

◦ For large n, we have q → 0 [cf. Eq. (3)], or 1 − q → 1. Also p → 0. Hence, 

var(X ) 
p2 2 2 2∼ nq + n q ∼ nq + n q p

1 − p 
−λ −2λ = nn + λn log(n)n 
−λ∼ nn = E[X ], 

where a(n) ∼ b(n) denotes a(n) 
b(n) → 1 as n → ∞. 

◦ This implies that 

E[X ] ∼ var(X ) ≥ (0 − E[X ])2P(X = 0), 

and therefore, 

P(X = 0) ≤ 
E[X ] 
E[X ]2 = 

1 
E[X ] 

→ 0. 

◦ It follows that P(at least one isolated node) → 1 and therefore, 
P(disconnected) → 1 as n → ∞, completing the proof. 
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Converse 

◦ We next show claim (2), i.e., if p(n) = λ log(n) with λ > 1, then n 
P(connected) → 1, or equivalently P(disconnected) → 0. 

◦ From Eq. (4), we have E[X ] = n · n−λ → 0 for λ > 1. 

◦ This implies probability of having isolated nodes goes to 0. However, we 
need more to establish connectivity. 

◦ The event “graph is disconnected” is equivalent to the existence of k nodes 
without an edge to the remaining nodes, for some k ≤ n/2. 

◦ We have 

P({1, . . . , k} not connected to the rest) = (1 − p)k(n−k), 

and therefore, � � 
n 

P(∃ k nodes not connected to the rest) = (1 − p)k(n−k). 
k 
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Converse (Continued) 

◦ Using the union bound [i.e. P(∪i Ai ) ≤ ∑i P(Ai )], we obtain � � n/2 n 
P(disconnected graph) ≤ ∑ (1 − p)k(n−k). 

k
k=1 � �k 

k◦ Using Stirling’s formula k ! ∼ e � � 
n � � � � 
≈ exp n log n − k log k − (n − k) log(n − k) = exp nH(k/n) ,

k 

where H(x) = −x log x − (1 − x) log(1 − x) is the entropy function 

◦ For p = λ log n/n, using (1 − p) ≈ exp(−p) � 
(1 − p)k(n−k) ≈ exp − n log n λ 

�k 
1 − 

�� k 
n n 
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Converse (Continued) 

◦ Using these approximations, we obtain 

n/2 � � k � � �� 
P(disconnected graph) ≤ ∑ exp nH − n log n λ 

k 
1 − 

k 
n n n

k=1 Z n/2 � �� 
≈ exp nfn(r ) 

1/n 

where fn(r ) = H(r ) − log nλr (1 − r ). 

◦ Invoking Laplace’s principle, we approximate Z n/2 � �� � � 
exp nfn(r ) ≈ C exp max fn(r ) . 

11/n ≤r ≤ n 
n 2 

for some constant C , independent of n 
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Converse (Continued) 

◦ It can be checked that maximum over [1/n, n/2] is achieved at r = 1/n. 

log n 
fn(1/n) ≈ −(λ − 1) . 

n 

◦ Therefore, we obtain � � 
P(disconnected graph) ≤ C exp − (λ − 1) log n 

= Cn−1+λ 

λ>1→ 0. 
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Phase Transitions — Connectivity Threshold 

Figure: Emergence of connectedness: a random network on 50 nodes with 
p = 0.10. 
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Diameter 

◦ Recall the diameter of a graph: let dij be the distance between nodes i and j 
(i.e., length of the shortest path between i and j). 

diameter = max dij . 
i ,j 

◦ We will show that the diameter of the ER graph varies as ln n. 

◦ Heuristic Argument: 

− Let c denote the average degree of a node, c = (n − 1)p. 
− The average number of nodes s steps away from a randomly chosen 

node is cs . 
− The number of nodes reached is equal to the total number of nodes 

s ≈ n, or s ≈ ln nwhen c ln c 
− Every node is within s steps of the starting point, implying that the 

diameter is approximately ln n .ln c 
s− This argument works when s is small (breaks down when c become 

comparable with n since number of nodes within distance s cannot 
exceed number of nodes in the whole graph). 
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Diameter 

◦ Consider two different starting nodes i and j . The average number of nodes 
s ts and t steps away from them will be equal to c and c (assume both 

remain smaller than order n). 

◦ We have dij > s + t + 1 if and only if there is no edge between the surfaces. 
tSince there are on average cs × c pairs of nodes between surfaces, this 

implies P(dij > s + t + 1) = (1 − p)c
s+t 

. Denoting l = s + t + 1, we have � � l−1cl−1 c 
P(dij > l) = (1 − p)c ≈ 1 − . 

n 
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Diameter 

◦ Taking logs of both sides, we find � � lc c 
ln P(dij > l) = c l−1 ln 1 − ≈ − , 

n n 
where we used ln(1 + x) ≈ x (which holds for large n). Therefore, � l � 

c 
P(dij > l) = exp − . 

n 

◦ The diameter is the smallest l such that P(dij > l) is zero. The preceding 
l l 1+ewill tend to zero only if c grows faster than n, i.e., c = an for some 

sconstant a and e → 0 (note that this can be achieved while keeping both c 
tand c smaller than n). 

◦ Rearranging for l , we obtain the diameter as 

ln a (1 + e) ln n ln n 
l = + lim = A + ,

ln c e→0 ln c ln c 

ln n◦ Example: Let n = 7 × 109 and c = 1000. Then, l = = 3.3.ln c 
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Branching Processes 

◦ Brief history of branching processes 

− Genesis in work by Thomas Malthus (1798) 
− An Essay on the Principle of Population 
− Led to Malthusianism: one of the key premises 

− Unchecked population grows exponentially; resources (e.g. food) don’t 
which is justified through the study of branching processes 

◦ John Keynes, Economic consequences of the Peace (1919) 

− Argues that European political economy of that time is unstable 
− Due to premise of Malthusianism 

◦ Study of extinction or growth of species in Ecology 

− Branching processes play crucial role 
− The Galton-Watson (1875) was one of the first such approach 

◦ General branching process theory 

− T. E. Harris, The Theory of Branching Processes (1963) 
− K. B. Athreya and P. E. Ney, Branching Processes (1972) 
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Branching Processes 

◦ We’ll use branching process 

− To analyze the emergence of giant component in ER graph 

◦ The Galton-Watson Branching process is defined as follows: 

◦ Start with a single individual at generation 0, Z0 = 1. 

◦ Let Zk denote the number of individuals in generation k. 

◦ Let ξ be a nonnegative discrete random variable with distribution pk , i.e., 

P(ξ = k) = pk , E[ξ] = µ, var (ξ) 6= 0. 

◦ Each individual has a random number of children in the next generation, 
which are independent copies of the random variable ξ. That is, 

Z1 = ξ, Z2 = 
Z1 

∑ ξ(i)(sum of random number of rvs). 
i=1 

E[Z1] = µ, 

E[Zn] = µn . 

2E[Z2] = E[E[Z2 | Z1]] = E[µZ1] = µ , 
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Branching Processes (Continued) 

◦ Let Z denote the total number of individuals in all generations, 
Z = ∑n 

∞ 
=1 Zn. 

◦ We consider the events Z < ∞ (extinction) and Z = ∞ (survive 
forever). 

◦ Our interest: when and with what probability do these events occur. 
◦ Two cases: 

− Subcritical (µ < 1) and supercritical (µ > 1) 

◦ Subcritical: µ < 1 
◦ Since E[Zn] = µn , we have h ∞ i ∞ h i 

E[Z ] = E ∑ Zn = ∑ E Zn = 
1 

< ∞,
1 − µn=1 n=1 

(some care is needed in the second equality). 
◦ This implies that Z < ∞ with probability 1 and P(extinction) = 1. 
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Branching Processes (Continued) 

◦ Supercritical: µ > 1 

◦ Recall p0 = P(ξ = 0). If p0 = 0, then P(extinction) = 0. 

◦ Let p0 > 0. We have ρ = P(extinction) ≥ P(Z1 = 0) = p0 > 0. 

◦ We can write the following fixed-point equation for ρ: 
∞ 

ρ = ∑ pk ρ
k = E[ρξ ] ≡ Φ(ρ). 

k=0 

◦ We have Φ(0) = p0 (using convention 00 = 1) and Φ(1) = 1 

◦ Φ is a convex function (Φ00(ρ) ≥ 0 for all ρ ∈ [0, 1]), and Φ0(1) = µ > 1. 
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Figure: The generating function Φ has a unique fixed point ρ∗ ∈ [0, 1). 
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