6.207/14.15: Networks
Lecture 10: Erdos-Renyi Graphs and Phase Transitions
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Phase Transitions for Erdos-Renyi Model

o Erdos-Renyi model is specified by the link formation probability p(n).

o For a given property A (e.g. connectivity), we define a threshold function
t(n) as a function that satisfies:

IP(property A) — 0 if p(n) > 0, and

t(n)

IP(property A) — 1 if P

( 7
t(n)

— This definition makes sense for “monotone or increasing properties,”
I.e., properties such that if a given network satisfies it, any
supernetwork (in the sense of set inclusion) satisfies it.

o When such a threshold function exists, we say that a phase transition occurs
at that threshold.

o Exhibiting such phase transitions was one of the main contributions of the
seminal work of Erdos and Renyi 1959.
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Threshold Function for Connectivity

Theorem

(Erdés and Renyi 1961) A threshold function for the connectedness of the Erdos

and Renyi model is t(n) = log(n)

n

o To prove this, it is sufficient to show that when p(n) = A(n)@ with
A(n) — 0, we have IP(connected) — 0 (and the converse).

o However, we will show a stronger result: Let p(n) = /\@.
If A <1, IP(connected) — 0, (1)
If A > 1, IP(connected) — 1. (2)

Proof:

o We first prove claim (1). To show disconnectedness, it is sufficient to show
that the probability that there exists at least one isolated node goes to 1.
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Proof (Continued)

O

Let /; be a Bernoulli random variable defined as

1 if node i is isolated,
[ = .
0 otherwise.

We can write the probability that an individual node is isolated as

g = ]P(/,' _ 1) _ (1 . p)n—l ~ e PN — e—/\log(n) _ n—/\

n
where we use limp_ 00 (1 — %) = e~ ? to get the approximation.

Let X = )7 ; I; denote the total number of isolated nodes. Then, we have

E[X]=n-n""
For A < 1, we have E[X]| — co. We want to show that this implies
P(X = 0) — 0.

o In general, this is not true. But, here it holds.
o We show that the variance of X is of the same order as its mean.

(4)



Proof (Continued)

o We compute the variance of X, var(X):

var(X) = Zvar(l,-) + Z ;COV(II’ li) = nvar(ly)+n(n—1)cov(l, b)

= nq(l—q)+n(n—1) (]E[/llz] — IE[/l]]E[/zD,

where the second and third equalities follow since the /; are identically
distributed Bernoulli random variables with parameter g (dependent).

o We have
E[hh] = P(lh =1L =1)=1P(both 1 and 2 are isolated)
2n—3 q°
p— ]_ — p n—= — .
1=P) (1-p)
o Combining the preceding two relations, we obtain )
q 2
X) = 1— —1 -
var(X) = nq(1=q)+n(n—1)| g7 - o]
q°p

= nq(l—q)+n(n—1)1_p.



Proof (Continued)

o For large n, we have g — 0 [cf. Eq. (3)], or 1 — g — 1. Also p — 0. Hence,
var(X) ~ nq+ nzqzﬁ ~ ng+ n°q°p
= nn~ 4+ Anlog(n)n=%
~ nn~* = E[X],

where a(n) ~ b(n) denotes % — 1 as n — oo.

o This implies that
E[X] ~ var(X) > (0 — E[X])?P(X = 0),
and therefore,

oo EX]
PX== Bixp T EX]

o It follows that IP(at least one isolated node) — 1 and therefore,
IP(disconnected) — 1 as n — oo, completing the proof.

> 0.
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Converse

o We next show claim (2), i.e., if p(n) = )\@ with A > 1, then
IP(connected) — 1, or equivalently IP(disconnected) — 0.

o From Eq. (4), we have E[X] =n-n"* — 0 for A > 1.

o This implies probability of having isolated nodes goes to 0. However, we
need more to establish connectivity.

o The event “graph is disconnected” is equivalent to the existence of k nodes
without an edge to the remaining nodes, for some k < n/2.

o We have
P({1,..., k} not connected to the rest) = (1 — p)k(”_k),

and therefore,

IP(3 k nodes not connected to the rest) = (Z) (1— p)kin=h),
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Converse (Continued)

o Using the union bound [i.e. P(U;A;) <Y, i)], we obtain

P(A
n/2
IP(disconnected graph) < Z ( ) (n—k).

k
o Using Stirling’'s formula k! ~ (5)

(Z) ~ exp (nlogn— klogk — (n— k) log(n—k)) =exp(nH(k/n)),

where H(x) = —xlogx — (1 — x) log(1 — x) is the entropy function
o For p=Alogn/n, using (1 — p) = exp(—p)

(1 — p)kln=h ~ exp(— nlogn A %(1— 5))

n
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Converse (Continued)

o Using these approximations, we obtain

n/?2 I
IP (disconnected graph) < Z exp (nH(—)

k=1 n
n/2

R~ exp (nfn(r)))

1/n

where fo(r) = H(r) —log nAr(1 —r).

o Invoking Laplace’s principle, we approximate

K

—nlogn A —

n

/1,;2 exp (nf,,(r))) ~ Cexp ( %rgrai( fn(r)>.

n
—2

for some constant C, independent of n

(

k
1 — —
n

))
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Converse (Continued)

o It can be checked that maximum over [1/n, n/2| is achieved at r = 1/n.

£(1/n) ~ —(A—1)°8"

n

o Therefore, we obtain

IP (disconnected graph) < Cexp ( —(A—1)log n)

Cn—l—l—)&

>
—

=50,
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Phase Transitions — Connectivity Threshold

Figure: Emergence of connectedness: a random network on 50 nodes with
p = 0.10.
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Diameter

o Recall the diameter of a graph: let dj; be the distance between nodes / and j

(i.e.,

length of the shortest path between i and j).

diameter = max dj;.
I,

o We will show that the diameter of the ER graph varies as In n.

o Heuristic Argument:

Let ¢ denote the average degree of a node, c = (n—1)p.

The average number of nodes s steps away from a randomly chosen
node is c°.

The number of nodes reached is equal to the total number of nodes
when ¢® =~ n, orsm::‘]—g

Every node is within s steps of the starting point, implying that the
diameter is approximately :2—2

This argument works when s is small (breaks down when ¢® become
comparable with n since number of nodes within distance s cannot

exceed number of nodes in the whole graph).
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Diameter

o Consider two different starting nodes / and j. The average number of nodes
s and t steps away from them will be equal to ¢® and ¢! (assume both
remain smaller than order n).

o We have djj > s+ t+ 1 if and only if there is no edge between the surfaces.
Since there are on average c° X ¢! pairs of nodes between surfaces, this
s+t

implies P(djj >s+t+1) =(1—p)c . Denoting / = s+ t+1, we have

-1
Py > 1) = (1—p) "~ (1-€)°

14
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Diameter

o Taking logs of both sides, we find
/

InP(dj > 1) =c"Lin (1 _ 5) ~ S

n n
where we used In(1 + x) = x (which holds for large n). Therefore,
/
P(djj > 1) = exp (—%) .

o The diameter is the smallest / such that P(dj; > /) is zero. The preceding

will tend to zero only if ¢/ erows faster than n, i.e., ¢! = anlt€ for some
y g

constant a and € — 0 (note that this can be achieved while keeping both c®
and ct smaller than n).

o Rearranging for /, we obtain the diameter as

Inc  e—0 In ¢ In ¢

o Example: Let n =7 x 109 and ¢ = 1000. Then, /| = 02 =33

Inc
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Branching Processes

O

O

Brief history of branching processes

— Genesis in work by Thomas Malthus (1798)

— An Essay on the Principle of Population
— Led to Malthusianism: one of the key premises

— Unchecked population grows exponentially; resources (e.g. food) don't

which is justified through the study of branching processes

John Keynes, Economic consequences of the Peace (1919)
— Argues that European political economy of that time is unstable
— Due to premise of Malthusianism
Study of extinction or growth of species in Ecology
— Branching processes play crucial role
— The Galton-Watson (1875) was one of the first such approach

General branching process theory

— T. E. Harris, The Theory of Branching Processes (1963)
— K. B. Athreya and P. E. Ney, Branching Processes (1972)

16
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Branching Processes

o We'll use branching process

— To analyze the emergence of giant component in ER graph
o The Galton-Watson Branching process is defined as follows:
o Start with a single individual at generation 0, Zy = 1.
o Let Z, denote the number of individuals in generation k.
o Let ¢ be a nonnegative discrete random variable with distribution py, i.e.,
P(C=k)=p.  Elll=p  var(l) #0.
o Each individual has a random number of children in the next generation,

which are independent copies of the random variable . That is,

z
Z1 =¢, Zo = Z §<’)(sum of random number of rvs).
i=1

E[Z1) =, E[Z] =E[E[Z | Zi]] = E[uzi] = p*,
E[Z,] = u".
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Branching Processes (Continued)

o Let Z denote the total number of individuals in all generations,
Z2=Y" 12,

o We consider the events Z < oo (extinction) and Z = oo (survive
forever).

o Qur interest: when and with what probability do these events occur.

o Two cases:
— Subcritical (# < 1) and supercritical (1 > 1)

o Subcritical: u <1
o Since [E[Z,] = u", we have

1

E[Z] :E[ilz,,} - ilﬁ[zn] =, <

(some care is needed in the second equality).
o This implies that Z < co with probability 1 and IP(extinction) = 1.
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Branching Processes (Continued)

O

©)

©)

©)

Supercritical: u > 1
Recall pp = IP(¢ = 0). If pg = 0, then IP(extinction) = 0.
Let pg > 0. We have p = P(extinction) > P(Z; =0) = py > 0.

We can write the following fixed-point equation for p:
o= pup* = E[p°] = (p).
k=0

We have ®(0) = pg (using convention 09 = 1) and ®(1) =1

® is a convex function (D" (p) > 0 for all p € [0,1]), and ®'(1) = u > 1.
77777 o=
Po'r |
e P

Figure: The generating function ® has a unique fixed point p* € [0, 1).
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