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Problem Set 2
Solutions 

Problem 2.1 
Let the directed graph G be a ring: node i is connected to i + 1  if  i < m

and m is connected to 1. Compute both eigenvalue centrality and Katz 
centrality (with = 1). Comment on your result. Do the same for a k-
regular undirected network (i.e., an undirected network in which every vertex 
has degree k). You may find the steps outlined in Newman Problem 7.1 
helpful. Comment on your result. 

Solution: 
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Here we prove that G can not have an eigenvalue > 1 
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Here we show that 1 is an eigenvalue of A because its an orthogo-
nal matrix with unit vectors 

(a) Eigenvector Centrality:
For an adjacency matrix A, the eigenvector with the highest eigenvalue
represents the eigenvector centrality of each node in A. G is an orthogo-

3rinal at x with the highest eigenvalue 1 and corresponding eigenvector
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Naturally, all nodes have equal centrality (both eigenvector and katz) 
due to symmetry. 
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This means that all eigenvalues of G  1. But since G is orthogonal, all
of its eigenvalues lie on the complex plane wit odulus 1 which meansh2
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eigenvector.

Katz Centrality:

(b) Eigenvector Cen2tralit3 y
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is an eigenvector of the adjacency matrix A with eigenvalue k, because

Using the same contradiction proof from (a), we can see thatmax(Ax) =
k⇤x

max

because k edges are contributing towards the vector multiplica-
tion of A
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Katz Centrality
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Setting x1 = ... = x
n = x and c = 1  and  ↵ as the attenuating factor, 

we can write 
1 

x = ↵kx + 1  ! x = 
1 ↵k

Thus, the centralities increase as k increases. All nodes have equal 
centrality (both eigenvector and katz) due to symmetry. 

Problem 2.2 
[Problem 7.2 from Newman] Suppose a directed network takes the form of a 
tree with all edges pointing inward towards a central vertex: (see figure in 
Newman). What is the PageRank centrality of the central vertex in terms 
of the single parameter ↵ appearing in the definition of PageRank and the 
geodesic distances d

i from each vertex i to the central vertex? 

Solution: 

We want to computer the Pagerank centrality of x
c of the central vertex 

and we assume that C = 1. Notice that 3 nodes have distance 3 from c, 
4 nodes have distance 2 from c and  2 nodes have  distance 1 from c.  Gen-
eralizing from the pattern any node that is distance d from c will have its 
centrality scaled with ↵ d number of times, towards the computation of x

c

. 

Therefore, 
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Problem 2.3 
Let the adjacency matrix A of a directed graph be nilpotent (i.e., Ar = 
0 for  some  r). 

(a) Give an example of such a graph with 5 nodes.

(b) Compute the eigenvalue centrality. Explain your answer.

(c) Compute the Katz centrality with = 1. Explain your answer.

Solution: 

(a) Any directed acyclic graph would do. Here is an example given below
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(b) Since A is nilpotent, the characteristic polynomial is tn = 0  and  all
the eigenvalues 

i are zero. So it does not make sense to look at the
eigenvector centrality, defined as the eigenvector associated with the
largest eigenvalue, 

max

.

(c) The katz centrality is computed iteratively using

. Picking ↵ = 0.3, for instance, and = 1  we  get  (after  4  iterations)

c

katz = [1  1.3 1.39 1.417 1.4251] 

which provides a sensible ranking if we take incoming edges to indicate 
importance. 
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Problem 2.4 
As flu season is upon us, we wish to have a Markov chain that models the 
spread of a flu virus. Assume a population of n individuals. At the beginning 
of each day, each individual is either infected or susceptible (capable of con-
tracting the flu). Suppose that each pair (i, j), i 6 j, independently comes= 
into contact with one another during the daytime with probability p. When-
ever an infected individual comes into contact with a susceptible individual, 
he/she infects him/her. In addition, assume that overnight, any individual 
who has been infected for at least 24 hours will recover with probability 
0 < q <  1 and return to being susceptible,  independently of everything else
(i.e., assume that a newly infected individual will spend at least one restless 
night battling the flu) 

(a) Suppose that there are m infected individuals at daybreak. What is
the distribution of the number of new infections by day end?

(b) Draw a Markov chain with as few states as possible to model the spread
of the flu for n = 2. In epidemiology, this is called an SIS (Susceptible-
Infected-Susceptible) model.

(c) Identify all recurrent states.

Due to the nature of the flu virus, individuals almost always develop immu-
nity after contracting the virus. Consequently, we improve our model and 
assume that individuals become infected at most one time. Thus, we consider 
individuals as either infected, susceptible, or recovered. 

(d) Draw a Markov chain to model the spread of the flu for n = 2.  In
epidemiology, this is called an SIR (Susceptible-Infected-Recovered)
model.

(e) Identify all recurrent states.

Solution: 

(a) If m out of n individuals are infected, then there must be n m suscep-
tible individuals. Each one of these individuals will be independently
infected over the course of the day with probability p = 1  - (1 - p )m.
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Thus the number of new infections, I, will be a binomial random vari-
able with parameters n m and p. That is, 

✓✓
n m

◆◆
m k

pI(k) = (p k)(1 p)n 
k = 0, 1, ...,  n  m 

k 

(b) Let the state of the SIS model be the number of infected individuals.
For n = 2, the corresponding Markov chain is illustrated below.
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(c) The only recurrent state is the one with 0 infected individuals

(d) Let the state of the SIR model be (S,I), where S is the number of
susceptible individuals and I is the number of infected individuals. For
n = 2, the corresponding Markov chain is illustrated below
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If one did not wish to keep track of the breakdown of susceptible and 
recovered individuals when no one was infected, the three states free of 
infections could be consolidated into a single state as illustrated below 

(e) Any state where the number of infected individuals equals 0 is a re-
current state. For n = 2,there are either one or three recurrent states,
depending on the Markov chain drawn in part(d).
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Problem 2.5 
There are n fish in a lake, some of which are green and the rest blue. Each 
day, Helen catches 1 fish. She is equally likely to catch any one of the n 
fish in the lake. She throws back all the fish, but paints each green fish blue 
before throwing it back in. Let G

i denote the event that there are i green 
fish left in the lake. 

(a) Show how to model this fishing exercise as a Markov chain, where G
i

are the states. Explain why your model satisfies the Markov property.

(b) Find the transition probabilities p
ij

(c) List the transient and recurrent states

Solution: 

(a) The number of remaining green fish at time n completely determines
all the relevant information of the systems entire history (relevant to
predicting the future state). Therefore it is immediate that the number
of green fish is the state of the system and the process has the Markov
property:

P (X
m+1 = j|X

m = i, X
m 1 = i

m 1, ...,  X1 = i1) =  P (X
m+1 = j|X

m = i)

(b) For j > i clearly p
ij = 0,  since a  blue fish will  never be  painted  green.

For 0  i, j  k, we have the following

p

ij = P (i ! j green fish are caught|current state = i) =

(c) The state 0 is an absorbing state since there is a positive probability
that the system will enter it, and once it does, it will remain there
forever. Therefore the state with 0 green fish is the only recurrent
state, and all other states are then transient.
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