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Agenda 

Perfect matchings 

Bargaining 

Competitive equilibrium in a two-sided market 

Supply networks and aggregate volatility 

Suggested Reading: 
• EK chapters 10 and 11; Jackson chapter 10 
• Manea (2011), “Bargaining in Stationary Networks” 
• Acemoglu et al. (2012), “The Network Origins of Aggregate 

Fluctuations” 
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Buyer-Seller Networks 
Often assume trade is unrestricted: any buyer can costlessly 
interact with any seller 

Not true in practice: 
• Product heterogeneity 
• Geographic proximity 
• Search costs 
• Reputation 

Develop theory of buyer-seller networks 
• Connections to bargaining, auctions, market-clearing prices 

Questions: 
• Can every buyer (seller) find a seller (buyer)? 
• Do market clearing prices exist? 
• Is the outcome of trade eÿcient? 
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Perfect Matchings 
A simple model: 
• Disjoint sets of buyers and sellers B and S, |B| = |S| = n 

• Bipartite graph G (all edges connect a buyer to a seller) 
• Write N(A) for set of neighbors of agents in A 

• A matching is a subset of edges such that no two share an 
endpoint 

Say i and j are matched if the matching contains an edge 
between them 

A matching is perfect if every buyer is matched to a seller and 
vice versa 

n• Contains 2 edges 
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Perfect Matchings 

Theorem 
The bipartite graph G has a matching of size |S| if and only if for 
every A � S we have |N(A)| � |A| 

Clearly necessary (why?), suÿciency is harder 

Call a set A � S with |A| > |N(A)| a constricted set 

Elegant alternating paths algorithm to find maximum matching 
and constricted sets (EK, 10.6) 
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Rubinstein Bargaining 

A seemingly unrelated problem... 

Consider one buyer and one seller 
• Seller has an item the buyer wants 
• Seller values at 0, buyer at 1 
• At time 1, seller proposes a price, buyer accepts or rejects 
• If accept, game ends, realize payo˙s 
• If reject, proceed to time 2, buyer makes o˙er 

Bargaining with alternating o˙ers 

Players are impatient, discount future at rate � 
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The One-Shot Deviation Principle 
Game has infinite time horizon, cannot use backward induction 
• Payo˙ is a discounted infinite sum 

Useful fact: one-shot deviation principle 

Theorem (Blackwell, 1965) 
In an infinite horizon game with bounded per-period payo˙s, a 
strategy profile s is a SPE if and only if for each player i there is 
no profitable deviation s0 i that agrees with si everywhere except 
at a single time t. 

HUGE simplification: only need to check deviations in a single 
period 
• Proof is beyond our scope 
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Rubinstein Bargaining 

Consider a profile of the following form: 
• There is a pair of prices (ps, pb) 
• The seller always proposes ps and accepts any p � pb 

• The buyer always o˙ers pb and accepts any p � ps 

Suppose the seller proposes in the current period 

Acceptance earns the buyer 1− ps, rejection earns �(1− pb) 
• Incentive compatible if ps � 1− � + �pb 

Similarly, when buyer proposes, acceptance is incentive 
compatible if pb � �ps 

Evan Sadler Networked Markets 8/35 



Rubinstein Bargaining 
In equilibrium, seller proposes highest acceptable price 
• ps = 1 − � + �pb 

Similarly, buyer o˙ers lowest acceptable price 
• pb = �ps 

Solving yields 
1� = � 

b = 
� 

1 + �
p , ps 1 + �

Theorem (Rubinstein 1982) 
The alternating o˙ers bargaining game has a unique SPE with 
o˙ers (p� s, p� b) that are immediately accepted. 
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Bargaining in a Bipartite Network 
Let’s extend this framework to a bipartite graph G connecting 
sellers S to buyers B 

At time 1, sellers simultaneously announce prices 
• A buyer can accept a single o˙er from a linked seller 
• All buyers who accept o˙ers are cleared from the market along 

with their sellers 
• In case of ties, social planner chooses trades to maximize total 

number of transactions 

Others proceed to time 2, when buyers make o˙ers 
• Alternating o˙ers framework as before 
• Previous model equivalent to a single buyer linked to a single 

seller 

Evan Sadler Networked Markets 10/35 



Example: Two Sellers, One Buyer 

Suppose there are two sellers linked to a single buyer 

Buyer will choose seller who o˙ers lowest price 
• If sellers o˙er same p > 0, buyer randomizes 
• Profitable deviation: o˙er p− � to ensure a sale 

In unique SPE, both sellers o˙er p = 0 
• Logic is reminiscient of Bertrand competition 
• The “short” side of the market has all the bargaining power 
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Bargaining in Networks 

What if there are two buyers and one seller? 
• Same logic applies, sells at price 1 

What if there are two buyers, each linked to same two sellers? 

Work backwards, what happens if one pair trades and exits the 
market? 
• Bargaining power is the same as in the one buyer one seller 

example 
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Bargaining in Networks 
Less clear what happens in more complicated graphs 
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Redundant Links 

Evan Sadler Networked Markets 14/35 



Bargaining in Networks 
Existence of perfect matching ensures near-equal bargaining 
power 

Once we eliminate redundant links, reduction to three cases 
• Price 0, 1, or close to 1

2 

Decomposition algorithm, three sets GS, GB, GE initially empty 
• First, identify sets of two or more sellers linked to a single 

buyer, remove and add to GS 

• Next, identify remaining sets of two or more buyers linked to a 
single seller, remove and add to GB 

• Repeat: for each k � 2, look for sets of k + 1 or more sellers 
(buyers) linked to k buyers (sellers); remove and add to the 
corresponding sets 

• Add remaining players to GE 
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Decomposition Example 
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Decomposition Example 

Evan Sadler Networked Markets 17/35 



Decomposition Example 
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Decomposition Example 
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Bargaining in Networks 

This simple algorithm pins down bargaining payo˙s 

Theorem 
There exists a SPE in which: 
• Sellers in GS get 0, buyers in GS get 1 
• Sellers in GB get 1, sellers in GB get 0 
• Sellers in GE get 1 

1+�
, buyers in GE get � 

1+� 

Prediction matches well with experimental findings 
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Valuations and Prices 

Suppose now that buyers have heterogeneous values for di˙erent 
sellers’ products 
• Each seller has an item, values it at zero, wants to maximize 

profits 
• Posted price 

Buyer i values seller j at vij, wants at most one object 
• Buy from seller j, pay pj � 0 
• Buyer utility vij − pj, seller utility pj 

The transaction generates surplus vij 
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Valuations and Prices 

For a buyer i, set of preferred sellers given prevailing prices p 

Di(p) = {j : vij − pj = max [vik − pk]}
k 

Preferred seller graph contains edge ij if and only if j 2 Di(p) 

A perfect matching in the preferred seller graph means we can 
match every buyer to a preferred seller, and no item is allocated 
to more than one buyer 
• Note, whether such a matching exists will depend on the prices 
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6

Valuations and Prices 

Who sells to whom? 

Definition 
A price vector p is competitive if there is an assignment 
µ : B ! S [ {;} such that µ(i) 2 Dip, and if µ(i) = µ(i0) for 
some i = i0, then µ(i) = ; (i.e. buyer i is unmatched). The pair 
(p, µ) is a competitive equilibrium if p is competitive, and 
additionally if seller j is unmatched in µ, then pj = 0. 

Competitive equilibrium prices are market-clearing prices 
• Equate supply and demand 
• Corresponds to perfect matching in preferred seller graph 
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Existence and Eÿciency 

Theorem (Shapley and Shubik, 1972) 
A competitive equilibrium always exists. Moreover, a competitive 
equilibrium maximizes the total valuation for buyers across all 
matchings (i.e. it maximizes total surplus). 

Proof beyond our scope 

More general versions of this result are known as the First 
Fundamental Theorem of Welfare 
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Bargaining in Stationary Networks 
What if there are multiple opportunities to trade over time? 

Simplest stationary model: 
• Set of players N = {1, 2, ..., n}
• Undirected graph G 

• Common discount rate � 

• No buyer-seller distinction, any pair can generate a unit surplus 

In each period, a directed link ij is chosen uniformly at random 
• Player i proposes a division to player j 

• Player j accepts or rejects 

If accept, players exit the game and are replaced by new, 
identical players 
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Bargaining in Stationary Networks 
Theorem 
There exists a unique payo˙ vector v such that in every subgame 
perfect equilibrium, the expected payo˙ to player i in any 
subgame is vi. Whenever i is selected to make an o˙er to j, we 
have 
• If �(vi + vj) < 1, then i o˙ers �vj to j, and j accepts 
• If �(vi + vj) > 1, then i makes an o˙er that j rejects 

Proof is beyond our scope; for generic �, always have 
�(vi + vj) 6= 1 

Intuition for strategies: �(vi + vj) is the joint outside option 
• Players make a deal if doing so is better than the outside 

option for both 
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Bargaining in Stationary Networks 

Can place bounds on payo˙s in limit equilibria 
• As � ! 1, equilibrium payo˙ vectors converge to a vector v� 

Let M denote an independent set of players (no two linked) 
• Let L(M) denote set of players linked to those in M 

Theorem 
For any independent set M , we have 

min 
i2M 

v � i � 
|L(M)|

|M |+ |L(M)| , max 
j2L(M) 

v � j � 
|M |

|M |+ |L(M)| 

Manea (2011) provides an algorithm to compute the payo˙s 
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Supply Networks 
During the financial crises, policy makers feared that firm failures 
could propagate through the economy 
• The president of Ford lobbied for GM and Chrysler to be 

bailed out 
• Feared that common suppliers would go bankrupt, disrupting 

Ford’s operations 

Such cascade e˙ects are not a feature of standard theory 
• In a perfectly competitive market with many firms, the e˙ects 

of a shock to one are spread evenly across the others 
• A failure has a small e˙ect on aggregate output 

Structure of supply networks can help tell us when cascade 
e˙ects are possible and how severe they might be 
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Supply Networks: A Model 
Variant of a multisector input-output model 
• Representative household endowed with one unit of labor 
• Household has Cobb-Douglas preferences over n goods: 

nY
(ci)1/nu(c1, c2, ..., cn) = A 

i=1 

• Each good i produced by a competitive sector, can be 
consumed or used as input to other sectors 

• Output of sector i is 
nY (1−�)wij�l� xi = z xi i ij 

j=1 

• li is the labor input, xij is the amount of commodity j used to 
produce commodity i, wij is the input share of commodity j, 
zi is a sector productivity shock (independent across sectors) 
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Supply Networks: A Model 
Output: 

nY 
�l� (1−�)wijxi = z xi i ij 

j=1 P nAssumption: j=1 wij = 1 
• Constant returns to scale 

Input-output matrix W with entries wij captures inter-sector 
relationships 
• Can think of W as a weighted network linking sectors P nDefine weighted out-degree di = j=1 wji, and let Fi be the 
distribution of �i = log zi 

Economy characterized by a set of sectors N , distribution of 
sector shocks {Fi}i2N , network W 
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Equilibrium Output 
Acemoglu et al (2012) show that the output in equilibrium (i.e. 
when the representative consumer maximizes utility and firms 
maximize profits) is given by 

nX 
y � log(GDP ) = vi�i 

i=1 

where v is the influence vector 
� 

v = [I − (1− �)W 0]−1 1 
n 

Influence vector is closely related to Bonacich centrality 

Shocks to more central sectors have a larger impact on aggregate 
output 
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Aggregate Volatility 

Let ̇ 2 
i denote the variance of �i 

We can compute the standard deviation of aggregate output as 

˙2 
i

vu utq nX 
var(y) = 2vi 

i=1 

If we have a lower bound on sector output variances ̇ , then this 
implies q

var(y) = �(kvk2) 

Volatility scales with the Euclidean norm of the influence vector 
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Example 

Suppose all sectors supply each other equally 
• wij = 1 

n 
for all i, j 

The influence vector then has vi = c 
n 

for some c and all i 

Also assume ̇ i = ˙ for all i 

Aggregate volatility is then 

Xn
vu utq ˙c 2 

i =var(y) = ˙ v p
ni=1 

Goes to zero as number of sectors becomes large 
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Example 

Suppose we have a dominant sector 1 that is the only supplier to 
all others 
• w1j = 1 for all j 

This implies v1 = c for some c, independent of n 

This implies a lower bound on aggregate volatility q
var(y) � ̇1c 

Volatility does not shrink with n 
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Asymptotics 
Can interpret economy with large n as more disaggregated 
• Increased specialization 
• Might expect less volatility 

For economy with n sectors, define the coeÿcient of variation 
STD(d(n))

CV (d(n)) = 
d 

Theorem 
Consider a sequence of economies with increasing n. Aggregate 
volatility satisfies 

q
var(y) � c 

1 + CV (d(n))p
n 

for some c. 
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