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Agenda 

• Binary action coordination games 
• Contagion in networks 
• Mean-field di˙usion models 
• Connection to Bayesian games 

Suggested Reading: EK Chapter 19; Morris (2000), “Contagion;” 
Jackson and Yariv (2007), “Di˙usion of Behavior and Equilibrium 
Properties in Network Games” 
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A Binary Action Coordination Game 
Consider the payo˙ matrix 

0 1 

0 (q, q) (0, 0) 

1 (0, 0) (1− q, 1− q) 

for some q 2 (0, 1) 

Two actions, players earn the same payo˙, positive i˙ they match 
• Action 1 is optimal i˙ other player chooses 1 w.p � q 

Coordinating on what? 
• Meeting place, technology standard, behavioral norm 
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Local Interaction Systems 
We’re going to think about player the coordination game with 
many opponents, not just one 
• Simultaneously play the game with a set of neighbors 
• Earn a payo˙ from the interaction with each neighbor 
• Must play same action with all neighbors 

Action 1 is optimal i˙ at least a fraction q of my neighbors 
choose action 1 

Definition 
A local interaction system is an infinite population X in which 
each agent interacts with a finite subset of others. Write x ̆  y if 
x and y are neighbors. Assume x ̆  y =) y ̆  x, there exists 
M < 1 such that |{y : x ̆  y}| � M for all x, and there exists 
a path between any pair of players. 
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Local Interaction Systems 

Write Gx for the set of neighbors of x 

Write X for some set of players and X for its complement 

Define ̌ (X, x) as the proportion of x’s neighbors in X: 

|X \Gx|
ˇ(X, x) = 

|Gx| 

Define �p(X) as the set of players x for whom ̌ (X, x) � p 

If set Y chooses action 1, the best response is for players in 
X = �q(Y ) to choose action 1 

Evan Sadler Di˙usion 5/32 



Best Response Dynamics 

We will study best response dynamics in local interaction systems 

Imagine action 1 spreading through the population 

Question: Is there a finite group of players that, if they start out 
playing action 1, can spread action 1 to the entire population? 

The contagion threshold ̆  is the largest value of q for which this 
is possible 
• Higher threshold =) easier to get contagion 
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Example: Interaction on a Line 

If q < 1
2 , a player switches to action 1 after one neighbor does 

Contagion threshold 1
2 
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Example: Interaction on an m-Dimensional Lattice 

Contagion threshold 1
4 
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Example: Trees 

Contagion threshold 1
3 

Evan Sadler Di˙usion 9/32 



Group Cohesion 

Use several properties in characterization. First: group cohesion 

A natural measure: relative frequency of in-group links versus 
out-group links 

Define the cohesion of X as 

c(X) = min ̌ (X, x) = max{p : X � �p(X)}
x2X 

We say X is p-cohesive if c(X) � p 
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Cohesion in our Examples 

Line network: non-trivial group is at most 1
2 -cohesive 

2-dimensional lattice: consider set of players above some 
horizonal line 
• Group is 3

4 -cohesive 

Tree: group consisting of an entire branch is 2
3 cohesive 

Evan Sadler Di˙usion 11/32 



Neighbor Growth 

Distance between x and X: length of shortest path between x 
and some player in X 

Define Gn(X) as set of players within distance n of X 

A local interaction system satisfies low neighbor growth if for all 

 > 1, we have 

Gn(X) ! 0 

n 

i.e. Gn(X) grows subexponentially 

Intuitively, low neighbor growth correlates with higher cohesion 

Evan Sadler Di˙usion 12/32 



�-Uniformity 
A labeling l on the set of players is a bijection with the positive 
integers 

Write �l(i) for the fraction of neighbors of i with a lower label 
under l 

A labeling is an Erdös labeling if there is a finite group X such 
that for all n we have 

i 2 Gn(X) and j /2 Gn(X) =) l(i) < l(j) 

A local interaction system satisfies �-uniformity if there exists an 
Erdös labeling such that for all suÿciently large K: 

max |�l(i)− �l(j)| � � 
i,j�K 
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�-uniformity 
Intuitive idea: for players suÿciently far from the reference set, 
fraction of neighbors with lower labels (i.e. closer to reference 
set) tends roughly towards something (within �) 

Example: 2-dimensional lattice 
• �-uniformity fails for � < 1

4 

For any n, there are 4(n + 1) players in Gn+1({x}) but not in 
Gn({x}) 
• Four sides of a square 

= 1
2 , but corners have Players in the middle of a side have �l(k)

�l(k) = 1
4 . 
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Characterizing the Contagion Threshold 

Recall the contagion threshold 8 9 < =[
˘ = max :q : [�q]k(X) = X for some finite X ;

k�1 

A group X is co-finite if its complement X is finite 

Theorem 
The contagion threshold ̆  is the smallest p such that every 
co-finite group contains an infinite (1− p)-cohesive subgroup. 

Cohesive groups can act as barriers to contagion 
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Characterizing the Contagion Threshold 

Theorem 
The contagion threshold is always at most 1 

2 . 

If the system satisfies low neighbor growth and �-uniformity, then 
the contagion threshold satisfies 

˘ � 1 2 − � 

Intuition: contagion always spreads slowly; if not, eventually too 
few neighbors are choosing action 1 

We need new adopters to have enough interaction with one 
another 
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Coexistence of Conventions 
An equilibrium of the local interaction game is a best response to 
itself 
• A group X taking action 1 is an equilibrium if everyone in X 

wants to keep choosing 1 and everyone in X wants to keep 
choosing 0 

A group X is an equilibrium i˙ X is q-cohesive and X is 
(1− q)-cohesive 

Theorem 
Suppose the system satisfies low neighbor growth and has 
contagion threshold ̆ . For all q 2 [˘, 1− ˘], the game has a 
co-existent equilibrium. 
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Discussion 

Results highlight qualitative features of networks that facilitate 
contagion 

Could derive analogous results for large but finite networks 

Conditions not always easy to check, doesn’t answer all questions 
we might ask 

Next up: a di˙erent approach based on distributional information 
about the network 
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A Mean-Field Approximation 
We have a large population (a continuum), characterize network 
via degree distribution D 

• Write pd for probability of degree d P • Write d = d pdd for the average degree 

A random neighbor has degree d with probability 

pdd 
p̃d = 

d 

Friendship paradox 

Agents choose between two actions, 0 or 1 
• Refer to 0 as the “default” 
• Heterogeneous costs c of choosing 1, continuous distribution F 
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A Mean-Field Approximation 

Added value of choosing action 1 is v(d, x) 
• Player’s degree d 

• Expects each neighbor to choose 1 w.p. x 

• Assume increasing in x, complementarities 

Agent i prefers action 1 if v(di, x) � ci 

• Happens with probability F (v(di, x)) 

Define Fd,x = F (v(d, x)), probability that degree d player wants 
to adopt, given neighbor adoption probability x 
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Examples 
Suppose v(d, x) = u(dx) for some increasing concave u 

• Payo˙s depend on expected number of adopting neighbors 
• Might be reasonable for adoption of a communication 

technology 

Suppose v(d, x) = u(x) for some increasing concave u 

• Care about average play of neighbors, network has no role 

Suppose v(d, x) is a step function: 

a if x � ̋ 
v(d, x) = 

b if x > ˝ 

8< : 

for some ̋  2 (0, 1) 
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Bayesian Equilibrium 
Consider a static game first 

Look at symmetric Bayes-Nash Equilibria: 
• Agent i observes own degree di and cost ci 

• Neighbors are random draw from the population, degree d 
with probability p̃d 

Existence follows from standard arguments 

Equilibrium condition: X 
x = °(x) � p̃dFd,x 

d 
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Bayesian Equilibrium 

Can think of °(x) as a best response map 
• If agents play a best response to neighbor adoption probability 

x, then the new neighbor adoption probability is °(x) 

In equilibrium, agent i adopts i˙ ci � v(di, x) 

Neighbor adoption probability x fully characterizes equilibrium 
behavior 
• Refer to x as an equilibrium 
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A Di˙usion Process 

Now look at a di˙usion process in discrete time 

At t = 0, some fraction of the population exogenously adopts 
action 1 
• Write x0 for corresponding neighbor adoption probability 

tWrite xd for fraction of degree d agents adopting at time t Pt t• Neighbor adoption probability x = d p̃dxd 

Next period, assume 
t+1 xd = Fd,xt 
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A Di˙usion Process 

Best response dynamics 

Two key assumptions: 
• Agents are myopic 
• Next period, neighobrs are a new independent random draw 

from the population 

Second assumption is what makes this “mean-field” 
• Unlike our earlier model, identity of adopting individual 

doesn’t matter 
• Can just keep track of population averages 
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Equilibrium Structure 

Complementarities ensure monotone convergence of the dynamics 

Note, if v is weakly increasing in degree d, then in equilibrium, 
higher degree agents are more likely to adopt 

A point x is a fixed point of the dynamics i˙ X 
x = p̃dFd,x = °(x) 

d 

Fixed points are exactly equilibria of the static game 
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Stability and Tipping 
An equilibrium x is stable if there exists �0 > 0 such that 
°(x − �) > x − � and °(x + �) < x + � for all �0 > � > 0 

Best response dynamics will return to equilibrium after a small 
disturbance 

An equilibrium is a tipping point if the inequalities above are 
reversed 
• A small disturbance causes the system to move away from the 

equilibrium 

Let ° and °̂ denote two best response mappings. We say °̂
generates greater di˙usion if: 
• For any stable equilibrium in °, there exists a higher one in °̂
• For any tipping point in °, there exists a lower one in °̂
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Stability and Tipping 

If °̂ is pointwise larger than °, then °̂ generates greater di˙usion 

Example: 
• Suppose F is uniform on [0, 1] 
• Assume v(d, x) = 1

2
p

x for all d 

• Implies Fd,x = °(x) = 1
2
p

x 

Equilibrum at x = 0 is unstable, equilibrium at x = 1
4 is stable 
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Comparative Statics 

Changes in the cost distribution 

Theorem 
If F̂ FOSD F , then we have °̂(x) � °(x) for all x, implying F 
generates greater di˙usion than F̂ . 

If adoption is more costly, you get less of it 
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Comparative Statics 
What about changes in the network structure? 

Theorem 
Consider two di˙erent neighbor degree distributions p and ̂p, and 
suppose Fd,x is non-decreasing in d. If p FOSD ̂p, then 
°(x) � ̂°(x), and p generates greater di˙usion than ̂p. 

If high-degree agents are (weakly) more inclined to adopt, then 
increasing density increases di˙usion 

X pdd X p̂dd 
°(x) = P Fd,x � P Fd,x = °̂(x) 

k pkk k pkkd d 

by definition of FOSD 
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Comparative Statics 

Something less obvious... 

Theorem 
Suppose p is a mean-preserving spread of ̂p, and dFd,x is 
non-decreasing and weakly convex in d. Then °(x) � ̂°(x), and 
p generates greater di˙usion than ̂p. 

Can think of MPS as increasing “centralization” 
• Intuition: MPS exacerbates the friendship paradox 

Proof left as an exercise 
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Looking Ahead 

Mean-field approach has advantages and disadvantages 
• Tractability 
• Some problematic assumptions 

Next time, an approach based on random graphs 
• Distributional assumptions on the network 
• No reshu˜ing links 
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